Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Arno van den Essen"'
Publikováno v:
Frontiers in Mathematics. Cham : Birkhauser
Frontiers in Mathematics
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics
Frontiers in Mathematics ISBN: 9783030605339
Item does not contain fulltext XII, 189 p.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91b02810dd6e0b2d851a13c1537cf1b5
http://hdl.handle.net/2066/234056
http://hdl.handle.net/2066/234056
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 113-177
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
Throughout this section k denotes an algebraically closed field of characteristic zero. But, as the reader can check, most of the calculations done after Corollary 5.1.3 work equally well if k is just a commutative \(\mathbb Q\)-algebra.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb84c2cafe49c42c8e4360dcfa9d5540
https://repository.ubn.ru.nl/handle/2066/234048
https://repository.ubn.ru.nl/handle/2066/234048
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 1-42
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
As discussed in the introduction of the book by van den Essen (Polynomial Automorphisms and the Jacobian Conjecture, Prog. Math., vol. 190, Birkhauser Verlag, Basel, 2000), Nagata conjectured that there exist wild polynomial automorphisms in three va
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8d95be874e381f07e094982dc6a9726
https://repository.ubn.ru.nl/handle/2066/234073
https://repository.ubn.ru.nl/handle/2066/234073
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 91-111
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
As we have seen in van den Essen (Polynomial Automorphisms and the Jacobian Conjecture, Prog. Math., vol. 190, Birkhauser Verlag, Basel, 2000), there are various equivalent formulations of the Jacobian Conjecture. The aim of this chapter is to give f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f847404ea896d4dc05a47606e9d7e737
https://repository.ubn.ru.nl/handle/2066/234071
https://repository.ubn.ru.nl/handle/2066/234071
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 43-64
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
Item does not contain fulltext Let k be a field, x = k[x1, …, xn] the polynomial ring in n variables over k, k(x) the field of fractions of k[x], and L a subfield of k(x) containing k. Hilbert’s fourteenth problem asks whether the k-algebra L ∩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d94b324594c4bc170d195c33a9b66e3a
https://repository.ubn.ru.nl/handle/2066/234021
https://repository.ubn.ru.nl/handle/2066/234021
Autor:
Álvaro Castañeda, Arno van den Essen
Publikováno v:
Journal of Algebra, 566, 283-301
Journal of Algebra, 566, pp. 283-301
Journal of Algebra, 566, pp. 283-301
The classification of the nilpotent Jacobians with some structure has been an object of study because of its relationship with the Jacobian conjecture. In this paper we classify the polynomial maps in dimension n of the form H = ( u ( x , y ) , u 2 (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::70b9c02153e68eb28e735a883fcc78bc
http://hdl.handle.net/2066/226085
http://hdl.handle.net/2066/226085
Autor:
Arno van den Essen
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030421359
In this paper we define the notion of a Mathieu-Zhao space, give various examples of this concept and use the framework of these Mathieu-Zhao spaces to describe a chain of challenging conjectures, all implying the Jacobian Conjecture.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7ea27ebcc215dfd8a4a33a3ab52044f9
https://doi.org/10.1007/978-3-030-42136-6_14
https://doi.org/10.1007/978-3-030-42136-6_14
Autor:
Simeon Nieman, Arno van den Essen
Publikováno v:
Journal of Pure and Applied Algebra, 220, 3300-3306
Journal of Pure and Applied Algebra, 220, 9, pp. 3300-3306
Journal of Pure and Applied Algebra, 220, 9, pp. 3300-3306
We describe all Mathieu–Zhao spaces of the univariate polynomial ring k[t]k[t] (k an algebraically closed field of characteristic zero) which have a non-zero strong radical.
Autor:
Wenhua Zhao, Arno van den Essen
Publikováno v:
Journal of Pure and Applied Algebra, 223, 4, pp. 1689-1698
Journal of Pure and Applied Algebra, 223, 1689-1698
Journal of Pure and Applied Algebra, 223, 1689-1698
Some cases of the LFED Conjecture, proposed by the second author [15] , for certain integral domains are proved. In particular, the LFED Conjecture is completely established for the field of fractions k ( x ) of the polynomial algebra k [ x ] , the f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94ef8500958e0f03bb5868199e6cee75
https://doi.org/10.1016/j.jpaa.2018.07.002
https://doi.org/10.1016/j.jpaa.2018.07.002
Autor:
Arno van den Essen, Xiaosong Sun
Publikováno v:
Journal of Pure and Applied Algebra, 222, 3219-3223
Journal of Pure and Applied Algebra, 222, 10, pp. 3219-3223
Journal of Pure and Applied Algebra, 222, 10, pp. 3219-3223
In this paper, we give a complete description of when the image of a monomial preserving derivation (or E -derivation) of the polynomial algebra over a field of characteristic zero is a Mathieu–Zhao subspace. In particular we show that the LFED and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6b4ef50b1ff054340189a92b2066bc9e
http://hdl.handle.net/2066/191524
http://hdl.handle.net/2066/191524