Zobrazeno 1 - 10
of 158
pro vyhledávání: '"Arno van den Essen"'
Autor:
Oda, Sususu
We have proved the following Problem:{\it Let $R$ be a $\mathbb{C}$-affine domain, let $T$ be an element in $R \setminus \mathbb{C}$ and let $i : \mathbb{C}[T] \hookrightarrow R$ be the inclusion. Assume that $R/TR \cong_{\mathbb{C}} \mathbb{C}^{[n-1
Externí odkaz:
http://arxiv.org/abs/1201.4198
Publikováno v:
The Mathematical Gazette, 2001 Nov 01. 85(504), 572-573.
Externí odkaz:
https://www.jstor.org/stable/3621827
Autor:
Richard J. Lipton, Kenneth W. Regan
Publikováno v:
People, Problems, and Proofs ISBN: 9783642414213
This chapter outlines a survey paper by van den Essen on the Jacobian Conjecture, which is on Stephen Smale’s short list of important problems besides the Millennium Prize ones. A new link discovered by Wenhua Zhao and broadened by van den Essen su
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::577d49f1bb4a6858724a3fa501919927
https://doi.org/10.1007/978-3-642-41422-0_7
https://doi.org/10.1007/978-3-642-41422-0_7
Autor:
Steve Abbott
Publikováno v:
The Mathematical Gazette. 85:572-573
Autor:
Lipton, Richard J., Regan, Kenneth W.
Publikováno v:
People, Problems & Proofs; 2013, p45-50, 6p
Publikováno v:
Frontiers in Mathematics. Cham : Birkhauser
Frontiers in Mathematics
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics
Frontiers in Mathematics ISBN: 9783030605339
Item does not contain fulltext XII, 189 p.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91b02810dd6e0b2d851a13c1537cf1b5
http://hdl.handle.net/2066/234056
http://hdl.handle.net/2066/234056
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 113-177
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
Throughout this section k denotes an algebraically closed field of characteristic zero. But, as the reader can check, most of the calculations done after Corollary 5.1.3 work equally well if k is just a commutative \(\mathbb Q\)-algebra.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb84c2cafe49c42c8e4360dcfa9d5540
https://repository.ubn.ru.nl/handle/2066/234048
https://repository.ubn.ru.nl/handle/2066/234048
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 1-42
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
As discussed in the introduction of the book by van den Essen (Polynomial Automorphisms and the Jacobian Conjecture, Prog. Math., vol. 190, Birkhauser Verlag, Basel, 2000), Nagata conjectured that there exist wild polynomial automorphisms in three va
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8d95be874e381f07e094982dc6a9726
https://repository.ubn.ru.nl/handle/2066/234073
https://repository.ubn.ru.nl/handle/2066/234073
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 91-111
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
As we have seen in van den Essen (Polynomial Automorphisms and the Jacobian Conjecture, Prog. Math., vol. 190, Birkhauser Verlag, Basel, 2000), there are various equivalent formulations of the Jacobian Conjecture. The aim of this chapter is to give f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f847404ea896d4dc05a47606e9d7e737
https://repository.ubn.ru.nl/handle/2066/234071
https://repository.ubn.ru.nl/handle/2066/234071
Publikováno v:
Essen, A. van den (ed.), Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century, pp. 43-64
Frontiers in Mathematics ISBN: 9783030605339
Frontiers in Mathematics ISBN: 9783030605339
Item does not contain fulltext Let k be a field, x = k[x1, …, xn] the polynomial ring in n variables over k, k(x) the field of fractions of k[x], and L a subfield of k(x) containing k. Hilbert’s fourteenth problem asks whether the k-algebra L ∩
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d94b324594c4bc170d195c33a9b66e3a
https://repository.ubn.ru.nl/handle/2066/234021
https://repository.ubn.ru.nl/handle/2066/234021