Zobrazeno 1 - 10
of 246
pro vyhledávání: '"Arno Knobbe"'
Publikováno v:
Frontiers in Sports and Active Living, Vol 4 (2022)
Externí odkaz:
https://doaj.org/article/7cde6ac9e03647adb0f49252b687ae99
Publikováno v:
International Journal of Sports Physiology and Performance, 1-9. Human Kinetics Publishers Inc.
STARTPAGE=1;ENDPAGE=9;ISSN=1555-0265;TITLE=International Journal of Sports Physiology and Performance
van der Zwaard, S, Otter, R T A, Kempe, M, Knobbe, A & Stoter, I K 2023, ' Capturing the Complex Relationship Between Internal and External Training Load : A Data-Driven Approach ', International Journal of Sports Physiology and Performance, vol. 18, no. 6, pp. 634-642 . https://doi.org/10.1123/ijspp.2022-0493
International Journal of Sports Physiology and Performance, 18(6), 634-642. Human Kinetics Publishers Inc.
STARTPAGE=1;ENDPAGE=9;ISSN=1555-0265;TITLE=International Journal of Sports Physiology and Performance
van der Zwaard, S, Otter, R T A, Kempe, M, Knobbe, A & Stoter, I K 2023, ' Capturing the Complex Relationship Between Internal and External Training Load : A Data-Driven Approach ', International Journal of Sports Physiology and Performance, vol. 18, no. 6, pp. 634-642 . https://doi.org/10.1123/ijspp.2022-0493
International Journal of Sports Physiology and Performance, 18(6), 634-642. Human Kinetics Publishers Inc.
Background: Training load is typically described in terms of internal and external load. Investigating the coupling of internal and external training load is relevant to many sports. Here, continuous kernel-density estimation (KDE) may be a valuable
Publikováno v:
Sensors, Vol 22, Iss 20, p 7996 (2022)
In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical
Externí odkaz:
https://doaj.org/article/40b03fb6fbc94649898a4cec40811c33
Publikováno v:
Communications in Computer and Information Science ISBN: 9783031275265
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2b2508ca1cbfd8399dca303f2cf3dbcd
https://doi.org/10.1007/978-3-031-27527-2_9
https://doi.org/10.1007/978-3-031-27527-2_9
Publikováno v:
Data Mining and Knowledge Discovery. SPRINGER
Data Mining and Knowledge Discovery
Data mining and knowledge discovery
Data Mining and Knowledge Discovery
Data mining and knowledge discovery
We present a personalized approach for frequent fitness monitoring in road cycling solely relying on sensor data collected during bike rides and without the need for maximal effort tests. We use competition and training data of three world-class cycl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53adffae51b385bd4cacfb4e333a444f
http://hdl.handle.net/1887/3512191
http://hdl.handle.net/1887/3512191
Publikováno v:
Proceedings, Vol 49, Iss 1, p 133 (2020)
In speed skating, environmental circumstances and the near-frictionless movement of the skate in a fore–aft direction over the ice make it difficult to measure technical performance parameters on a regular basis while training in an indoor speed sk
Externí odkaz:
https://doaj.org/article/a2857b1d05ca4559b36904966d051acc
Publikováno v:
de Leeuw, A W, van Baar, R, Knobbe, A & van der Zwaard, S 2022, ' Modeling Match Performance in Elite Volleyball Players : Importance of Jump Load and Strength Training Characteristics ', Sensors, vol. 22, no. 20, 7996, pp. 1-13 . https://doi.org/10.3390/s22207996
Sensors
Sensors, 22(20):7996, 1-13. Multidisciplinary Digital Publishing Institute (MDPI)
Sensors; Volume 22; Issue 20; Pages: 7996
Sensors, 22(20), 7996. MDPI
Sensors
Sensors, 22(20):7996, 1-13. Multidisciplinary Digital Publishing Institute (MDPI)
Sensors; Volume 22; Issue 20; Pages: 7996
Sensors, 22(20), 7996. MDPI
In this study, we investigated the relationships between training load, perceived wellness and match performance in professional volleyball by applying the machine learning techniques XGBoost, random forest regression and subgroup discovery. Physical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a03afbcc15aa2dc9d470c30d7ce49fe
https://research.vu.nl/en/publications/b4bfb4f6-51bd-4973-86fc-5d2339c4584a
https://research.vu.nl/en/publications/b4bfb4f6-51bd-4973-86fc-5d2339c4584a
Autor:
Ricardo da Silva Torres, Felipe Arruda Moura, Koen A.P.M. Lemmink, F R Goes, Daniele C. Uchoa Maia Rodrigues, Murilo José de Oliveira Bueno, Laurentius Antonius Meerhoff, Marije T. Elferink-Gemser, Arno Knobbe, Sergio Augusto Cunha, Michel Brink
Publikováno v:
European Journal of Sport Science. TAYLOR & FRANCIS LTD
European Journal of Sport Science
European Journal of Sport Science
In professional soccer, increasing amounts of data are collected that harness great potential when it comes to analysing tactical behaviour. Unlocking this potential is difficult as big data challenges the data management and analytics methods common
Publikováno v:
Intelligent Data Analysis. 24:1403-1439
Subgroup Discovery is a supervised, exploratory data mining paradigm that aims to identify subsets of a dataset that show interesting behaviour with respect to some designated target attribute. The way in which such distributional differences are qua
Publikováno v:
European journal of sport science, 22(4), 511-520. Taylor and Francis Ltd.
European Journal of Sport Science, 22(4), 511-520. Informa UK Limited
de Leeuw, A-W, van der Zwaard, S, van Baar, R & Knobbe, A 2022, ' Personalized machine learning approach to injury monitoring in elite volleyball players ', European journal of sport science, vol. 22, no. 4, pp. 511-520 . https://doi.org/10.1080/17461391.2021.1887369
European Journal of Sport Science, 22(4), 511-520. Informa UK Limited
de Leeuw, A-W, van der Zwaard, S, van Baar, R & Knobbe, A 2022, ' Personalized machine learning approach to injury monitoring in elite volleyball players ', European journal of sport science, vol. 22, no. 4, pp. 511-520 . https://doi.org/10.1080/17461391.2021.1887369
We implemented a machine learning approach to investigate individual indicators of training load and wellness that may predict the emergence or development of overuse injuries in professional volleyball. In this retrospective study, we collected data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11d790bbd97f9c57a70edc960b61384f
https://research.vu.nl/en/publications/8cae57c1-6c5f-4785-8e5e-e1f48412b04b
https://research.vu.nl/en/publications/8cae57c1-6c5f-4785-8e5e-e1f48412b04b