Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Arne Taube"'
Publikováno v:
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 22:77-103
Publikováno v:
Journal of Scientific Computing. 30:441-464
In this paper, we propose a discontinuous Galerkin scheme with arbitrary order of accuracy in space and time for the magnetohydrodynamic equations. It is based on the Arbitrary order using DERivatives (ADER) methodology: the high order time approxima
Publikováno v:
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783642356797
The objective of our project is the development of high-order methods for the unsteady Navier-Stokes equations and their application to cavity flow by means of Large-Eddy-Simulation (LES). For this purpose, we consider discontinuous Galerkin schemes.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7ac67f10e964d779132862f8b97bd657
https://doi.org/10.1007/978-3-642-35680-3_82
https://doi.org/10.1007/978-3-642-35680-3_82
Publikováno v:
High Performance Computing in Science and Engineering, Garching/Munich 2009 ISBN: 9783642138713
We describe the current progress of our project towards a numerical simulation of a scram-jet intake at high Mach number. We will outline why we have not yet reached our goals and need more computational time and resources. Nevertheless we present re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71f89e7b8be492de093bc48171137eb3
https://doi.org/10.1007/978-3-642-13872-0_19
https://doi.org/10.1007/978-3-642-13872-0_19
Publikováno v:
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783642037061
In the following, we describe an explicit discontinuous Galerkin scheme for the compressible Navier-Stokes equations. The scheme is of arbitrary order of accuracy by choosing the polynomial degree of the approximation. It is kept very local so that t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::74060217755169a85a40928aa4c4bf2d
https://doi.org/10.1007/978-3-642-03707-8_5
https://doi.org/10.1007/978-3-642-03707-8_5
Autor:
Claus-Dieter Munz, Arne Taube
Publikováno v:
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783642037061
One key problem in higher-order methods is the preservation of monotonicity across discontinuities such as shock waves. This synthesis report gives an overview about the different approaches adopted by the ADIGMA partners, INRIA, NJU, SERAM, UNBG, UN
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8479da6323363d1d887f036ead6a056d
https://doi.org/10.1007/978-3-642-03707-8_14
https://doi.org/10.1007/978-3-642-03707-8_14
Publikováno v:
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783642037061
Based on an explicit discontinuous Galerkin scheme for the compressible Navier-Stokes equations we describe an adaptation framework which consists of two building blocks. First, adaptation in time due to time accurate local time stepping and second,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::69bf3779e347e7c1ecab667f9459ec36
https://doi.org/10.1007/978-3-642-03707-8_30
https://doi.org/10.1007/978-3-642-03707-8_30
Autor:
Gregor J. Gassner, Claus-Dieter Munz, Frieder Lörcher, Arne Taube, Christoph Altmann, Jens Utzmann
Publikováno v:
Notes on Numerical Fluid Mechanics and Multidisciplinary Design ISBN: 9783642142420
The objective of our project is the development of high-order methods for the unsteady Euler and Navier Stokes equations. For this, we consider an explicit DG scheme formulated in a space-time context called the Space-Time Expansion DG scheme (STE-DG
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b0f93da1b8efce0ba1eab50ebb732de8
https://doi.org/10.1007/978-3-642-14243-7_19
https://doi.org/10.1007/978-3-642-14243-7_19
Publikováno v:
Shock Waves ISBN: 9783540851806
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::306ca69e157f5eca6053537dc75f74eb
https://doi.org/10.1007/978-3-540-85181-3_42
https://doi.org/10.1007/978-3-540-85181-3_42