Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Armen Sergeev"'
Autor:
Armen Sergeev
Publikováno v:
Mathematics, Vol 3, Iss 1, Pp 47-75 (2015)
We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic s
Externí odkaz:
https://doaj.org/article/75f8ed6244fe4eaa9cd66efb9f6ed8c4
Autor:
Armen Sergeev
Publikováno v:
Indagationes Mathematicae. 34:294-305
Autor:
Armen Sergeev
Publikováno v:
Journal of Mathematical Sciences. 266:476-482
Autor:
Armen Sergeev
Publikováno v:
Theoretical and Mathematical Physics. 208:1144-1155
In this paper, we pay the main attention to the topological insulators invariant under time reversal. Such systems are characterized by having a wide energy gap stable under small deformations. An example of such systems is provided by the quantum sp
Autor:
Armen Sergeev
Publikováno v:
Transactions of the Moscow Mathematical Society. 81:123-167
Autor:
Armen Sergeev
Publikováno v:
Theoretical and Mathematical Physics. 203:621-630
The problem of quantizing the space Ωd of smooth loops taking values in the d-dimensional vector space can be solved in the framework of the standard Dirac approach. But a natural symplectic form on Ωd can be extended to the Hilbert completion of
Autor:
Armen Sergeev
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 203:220-230
Задача квантования пространства $\Omega_d$ гладких петель, принимающих значения в $d$-мерном векторном пространстве, может решаться в рамках
Autor:
Armen Sergeev
Publikováno v:
Russian Mathematical Surveys. 75:321-367
This paper is devoted to a survey of recent results in the Kähler geometry of infinite-dimensional Kähler manifolds. Three particular classes of such manifolds are investigated: the loop spaces of compact Lie groups, Hilbert–Schmidt Grassmannians
Autor:
Armen Sergeev
Publikováno v:
Theoretical and Mathematical Physics. 203:561-568
We present the concept of an adiabatic limit of Ginzburg—Landau dynamical equations on ℝ1+2 and Seiberg—Witten equations on four-dimensional symplectic manifolds. We show that the Seiberg—Witten equations can be regarded as a complex version
Autor:
Armen Sergeev, Kh. A. Khachatryan
Publikováno v:
Transactions of the Moscow Mathematical Society. 80:95-111