Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Armando G. M. Neves"'
Autor:
Armando G. M. Neves, Gustavo Guerrero
Publikováno v:
Physica D. Nonlinear Phenomena
The presence of a large number of infected individuals with few or no symptoms is an important epidemiological difficulty and the main mathematical feature of COVID-19. The A-SIR model, i.e. a SIR (Susceptible–Infected–Removed) model with a compa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02ab84609c57ade546fb60e3d6f20974
Autor:
Armando G M Neves, Maurizio Serva
Publikováno v:
PLoS ONE, Vol 7, Iss 10, p e47076 (2012)
Considering the recent experimental discovery of Green et al that present-day non-Africans have 1 to [Formula: see text] of their nuclear DNA of Neanderthal origin, we propose here a model which is able to quantify the genetic interbreeding between t
Externí odkaz:
https://doaj.org/article/fac47918c8774c47b3ed704e03896a46
Publikováno v:
Journal of Mathematical Biology. 78:1033-1065
This paper is based on the complete classification of evolutionary scenarios for the Moran process with two strategies given by Taylor et al. (B. Math. Biol. 66(6): 1621--1644, 2004). Their classification is based on whether each strategy is a Nash e
Autor:
Armando G. M. Neves
Publikováno v:
Ciência e Natura. 42:e55
Explicamos de maneira bastante introdutoria alguns modelos matematicos para fenomenos da Biologia, mostrando a importância que a Matematica pode ter para o entendimento de algumas questoes biologicas. Falamos em particular de modelos para epidemias,
Autor:
Armando G. M. Neves
Publikováno v:
Journal of Nonlinear Mathematical Physics. 18:359
In this paper we prove some results and detail some calculations published in a previous paper by us on the Eigen model with a periodically moving sharp-peak landscape. The model is concerned with evolution of a virus population in a time-dependent e
Publikováno v:
Journal of Mathematical Biology. 73:1665-1690
We will study a population of individuals playing the infinitely repeated Prisoner's Dilemma under replicator dynamics. The population consists of three kinds of individuals using the following reactive strategies: ALLD (individuals which always defe
Autor:
Eliza M. Ferreira, Armando G. M. Neves
Publikováno v:
Journal of mathematical biology. 81(1)
We study fixation probabilities for the Moran stochastic process for the evolution of a population with three or more types of individuals and frequency-dependent fitnesses. Contrarily to the case of populations with two types of individuals, in whic
Autor:
Paulo C. Lima, Armando G. M. Neves
Publikováno v:
Journal of Statistical Physics. 144:749-758
We show that the residual entropy, S, for the two-dimensional Blume-Emery-Griffiths model at the antiquadrupolar-ferromagnetic coexistence line satisfies the following bounds $\ln(\lambda_{1,2n,+}/\lambda_{1,2n-1,+})\leq S\leq (\ln \lambda_{1,k,\math
Autor:
Armando G. M. Neves
Publikováno v:
Communications on Pure & Applied Analysis. 9:611-624
We give a complete proof of the existence of an infinite set of eigenmodes for a vibrating elliptic membrane in one to one correspondence with the well-known eigenmodes for a circular membrane. More exactly, we show that for each pair $(m,n) \in \{0,
Autor:
Armando G. M. Neves
Publikováno v:
Communications on Pure and Applied Analysis. 3:447-464
For each Mathieu characteristic number of integer order (MCN) we construct sequences of upper and lower bounds both converging to the MCN. The bounds arise as zeros of polynomials in sequences generated by recursion. This result is based on a constru