Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Armana, Cécile"'
In the early 1970s, Andrew Ogg made several conjectures about the rational torsion points of elliptic curves over $\mathbb{Q}$ and the Jacobians of modular curves. These conjectures were proved shortly after by Barry Mazur as a consequence of his fun
Externí odkaz:
http://arxiv.org/abs/2410.05502
Autor:
Armana, Cécile
We study two analogs, for modular forms over $\mathbb{F}_{q}(T)$, of the pairing between Hecke algebra and cusp forms given by the first coefficient in the expansion. For Drinfeld modular forms, the $\mathbb{C}_{\infty}$-pairing is provided by the fi
Externí odkaz:
http://arxiv.org/abs/2408.11473
Let $q\geq2$ be a prime power and consider Drinfeld modules of rank 2 over $\mathbb{F}_q[T]$. We prove that there are no points with coordinates being Drinfeld singular moduli, on a family of hyperbolas $XY=\gamma$, where $\gamma$ is a polynomial of
Externí odkaz:
http://arxiv.org/abs/2404.01075
Autor:
Armana, Cécile, Wei, Fu-Tsun
In this paper, we obtain two analogues of the Sturm bound for modular forms in the function field setting. In the case of mixed characteristic, we prove that any harmonic cochain is uniquely determined by an explicit finite number of its first Fourie
Externí odkaz:
http://arxiv.org/abs/2003.00815
Autor:
Armana, Cécile, Wei, Fu-Tsun
Publikováno v:
In Journal of Number Theory August 2022 237:67-98
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria
Given a prime number l greater than or equal to 5, we construct an infinite family of three-dimensional abelian varieties over Q such that, for any A/Q in the family, the Galois representation \rho_{A, l}: Gal_Q -> GSp(6, l) attached to the l-torsion
Externí odkaz:
http://arxiv.org/abs/1507.05913
Autor:
Armana, Cécile
Cette thèse étudie l'existence de points de torsion pour les modules de Drinfeld de rang 2 sur des extensions finies de F_q(T), pour q puissance d'un nombre premier. Notre approche suit celle de Mazur et Merel pour la torsion des courbes elliptique
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00338117
http://tel.archives-ouvertes.fr/docs/00/34/93/10/PDF/these-armana.pdf
http://tel.archives-ouvertes.fr/docs/00/34/93/10/PDF/these-armana.pdf
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista
Externí odkaz:
http://arxiv.org/abs/1407.5802
Autor:
Armana, Cécile
Modular symbols for the congruence subgroup $\Gamma_0(\mathfrak{n})$ of $GL_{2}(\mathbf{F}_q[T])$ have been defined by Teitelbaum. They have a presentation given by a finite number of generators and relations, in a formalism similar to Manin's for cl
Externí odkaz:
http://arxiv.org/abs/1402.5243
Autor:
Armana, Cécile
Publikováno v:
In Journal of Number Theory August 2011 131(8):1435-1460