Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Arman Cohan"'
Autor:
Daniel Khashabi, Arman Cohan, Siamak Shakeri, Pedram Hosseini, Pouya Pezeshkpour, Malihe Alikhani, Moin Aminnaseri, Marzieh Bitaab, Faeze Brahman, Sarik Ghazarian, Mozhdeh Gheini, Arman Kabiri, Rabeeh Karimi Mahabagdi, Omid Memarrast, Ahmadreza Mosallanezhad, Erfan Noury, Shahab Raji, Mohammad Sadegh Rasooli, Sepideh Sadeghi, Erfan Sadeqi Azer, Niloofar Safi Samghabadi, Mahsa Shafaei, Saber Sheybani, Ali Tazarv, Yadollah Yaghoobzadeh
Publikováno v:
Transactions of the Association for Computational Linguistics, Vol 9, Pp 1147-1162 (2021)
AbstractDespite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language,
Externí odkaz:
https://doaj.org/article/628c3c423b8e4fc681edcc882bbb9c33
Autor:
Pratheek S. Bobba, Anne Sailer, James A. Pruneski, Spencer Beck, Ali Mozayan, Sara Mozayan, Jennifer Arango, Arman Cohan, Sophie Chheang
Publikováno v:
Clinical Imaging. 97:55-61
Autor:
Saber Sheybani, Sarik Ghazarian, Shahab Raji, Erfan Noury, Arman Kabiri, Yadollah Yaghoobzadeh, Niloofar Safi Samghabadi, Moin Aminnaseri, Erfan Sadeqi Azer, Faeze Brahman, Siamak Shakeri, Daniel Khashabi, Ali Tazarv, Mozhdeh Gheini, Omid Memarrast, Mohammad Sadegh Rasooli, Mahsa Shafaei, Malihe Alikhani, Marzieh Bitaab, Pouya Pezeshkpour, Arman Cohan, Sepideh Sadeghi, Rabeeh Karimi Mahabagdi, Pedram Hosseini, Ahmadreza Mosallanezhad
Publikováno v:
Transactions of the Association for Computational Linguistics. 9:1147-1162
Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of t
Publikováno v:
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts.
Autor:
Dustin Wright, David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan, Isabelle Augenstein, Lucy Wang
Publikováno v:
Wright, D, Wadden, D, Lo, K, Kuehl, B, Cohan, A, Augenstein, I & Wang, L L 2022, Generating Scientific Claims for Zero-Shot Scientific Fact Checking . in Generating Scientific Claims for Zero-Shot Scientific Fact Checking . Association for Computational Linguistics, 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 23/05/2022 . https://doi.org/10.18653/v1/2022.acl-long.175
Automated scientific fact checking is difficult due to the complexity of scientific language and a lack of significant amounts of training data, as annotation requires domain expertise. To address this challenge, we propose scientific claim generatio
Long-context question answering (QA) tasks require reasoning over a long document or multiple documents. Addressing these tasks often benefits from identifying a set of evidence spans (e.g., sentences), which provide supporting evidence for answering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01cff046785e7bc219efb6c189e0cae9
http://arxiv.org/abs/2112.08777
http://arxiv.org/abs/2112.08777
The scientific claim verification task requires an NLP system to label scientific documents which Support or Refute an input claim, and to select evidentiary sentences (or rationales) justifying each predicted label. In this work, we present MultiVer
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::96927cf72bd07e364dc7d5ef98fb9e0d
http://arxiv.org/abs/2112.01640
http://arxiv.org/abs/2112.01640
Publikováno v:
SIGIR
SIGIR 2021: 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
SIGIR 2021: 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
Managing the data for Information Retrieval (IR) experiments can be challenging. Dataset documentation is scattered across the Internet and once one obtains a copy of the data, there are numerous different data formats to work with. Even basic format
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5409bf5236ea639557500874ad24efe1
https://hdl.handle.net/21.11116/0000-0009-667B-B21.11116/0000-0009-6679-D
https://hdl.handle.net/21.11116/0000-0009-667B-B21.11116/0000-0009-6679-D
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4a3c225024c39fd171f2b4ba8873cd68
Publikováno v:
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorials.
In this tutorial, we aim at bringing interested NLP researchers up to speed about the recent and ongoing techniques for document-level representation learning. Additionally, our goal is to reveal new research opportunities to the audience, which will