Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Arlinskii, Yury"'
Autor:
Arlinskii, Yury
Using the approach proposed in [5] , in an infinite-dimensional separable complex Hilbert space we give abstract constructions of families $\{{\mathcal T}_z\}_{{\rm Im\,} z>0}$ of closed densely defined symmetric operators with the properties: (I) th
Externí odkaz:
http://arxiv.org/abs/2403.01473
Autor:
Arlinskiĭ, Yury
In the infinite-dimensional separable complex Hilbert space we construct new abstract examples of unbounded maximal accretive and maximal sectorial operators $B$ for which ${\rm dom\,}B^{\frac{1}{2}}\ne{\rm dom\,}B^{*{\frac{1}{2}}}$. New criterions f
Externí odkaz:
http://arxiv.org/abs/2105.03900
Autor:
Arlinskiĭ, Yury, Hassi, Seppo
In this paper holomorphic families of linear relations which belong to the Stieltjes or inverse Stieltjes class are studied. It is shown that in their domain of holomorphy ${\mathbb C}\setminus{\mathbb R}_+$ the values of Stieltjes and inverse Stielt
Externí odkaz:
http://arxiv.org/abs/2101.10395
Autor:
Arlinskiĭ, Yury, Tretter, Christiane
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 December 2023 528(2)
Autor:
Arlinskii, Yury, Tretter, Christiane
Publikováno v:
Adv. in Math. 2020
This paper shows that for the domain intersection $\dom T\cap\dom T^*$ of a closed linear operator and its Hilbert space adjoint everything is possible for very common classes of operators with non-empty resolvent set. Apart from the most striking ca
Externí odkaz:
http://arxiv.org/abs/1911.05042
Autor:
Arlinskiĭ, Yury, Hassi, Seppo
We study analytic and geometric properties of Stieltjes and inverse Stieltjes families defined on a separable Hilbert space and establish various minimal representations for them by means of compressed resolvents of various types of linear relations.
Externí odkaz:
http://arxiv.org/abs/1807.01691
Autor:
Arlinskiĭ, Yury, Hassi, Seppo
In this paper we study a class $\mathcal R\mathcal S(\mathfrak M)$ of operator functions that are holomorphic in the domain $\mathbb C\setminus\{(-\infty,-1]\cup [1,+\infty)\}$ and whose values are contractive operators in a Hilbert space $(\mathfrak
Externí odkaz:
http://arxiv.org/abs/1801.10499
Autor:
Arlinskii, Yury, Hassi, Seppo
Contractive selfadjoint extensions of a Hermitian contraction $B$ in a Hilbert space ${\mathfrak H}$ with an exit in some larger Hilbert space ${\mathfrak H}\oplus{\mathcal H}$ are investigated. This leads to a new geometric approach for characterizi
Externí odkaz:
http://arxiv.org/abs/1502.03239
Autor:
Arlinskiĭ, Yury, Tretter, Christiane
Publikováno v:
In Advances in Mathematics 18 November 2020 374
Autor:
Arlinskii, Yury, Zagrebnov, Valentin
For a {bounded} non-negative self-adjoint operator acting in a complex, infinite-dimensional, separable Hilbert space H and possessing a dense range R we propose a new approach to characterisation of phenomenon concerning the existence of subspaces M
Externí odkaz:
http://arxiv.org/abs/1312.6502