Zobrazeno 1 - 10
of 33 765
pro vyhledávání: '"Arkhipov IN"'
We show that the nearby cycles functor for the $p$-adic Hecke stack at parahoric level is perverse t-exact, by developing a theory of Wakimoto filtrations at Iwahori level, and that it lifts to the $\mathbb{E}_1$-center. We apply these tools to const
Externí odkaz:
http://arxiv.org/abs/2311.04043
Autor:
Rosanov, N. N.1 (AUTHOR) nnrosanov@mail.ru, Arkhipov, M. V.2 (AUTHOR) m.arkhipov@spbu.ru, Arkhipov, R. M.1,2 (AUTHOR) arkhipovrostislav@gmail.com, Plachenov, A. B.3 (AUTHOR) a_plachenov@mail.ru, Tumakov, D. A.1 (AUTHOR) dm.tumakov@gmail.com
Publikováno v:
Optics & Spectroscopy. Mar2023, Vol. 131 Issue 3, p168-171. 4p.
Autor:
Guo, Shaoming, Zorin-Kranich, Pavel
Publikováno v:
Adv. Math. 360 (2020)
We prove $\ell^{p}L^{p}$ decoupling inequalities for a class of moment manifolds. These inequalities imply optimal mean value estimates for multidimensional Weyl sums of the kind considered by Arkhipov, Chubarikov, and Karatsuba and by Parsell. In ou
Externí odkaz:
http://arxiv.org/abs/1811.02207
Autor:
Kokić, Ivo
Publikováno v:
Polemos; 2023, Vol. 26 Issue 52, p173-191, 19p
Autor:
Guo, Shaoming, Zorin-Kranich, Pavel
Publikováno v:
In Advances in Mathematics 22 January 2020 360
Autor:
Mineault, Patrick, Zanichelli, Niccolò, Peng, Joanne Zichen, Arkhipov, Anton, Bingham, Eli, Jara-Ettinger, Julian, Mackevicius, Emily, Marblestone, Adam, Mattar, Marcelo, Payne, Andrew, Sanborn, Sophia, Schroeder, Karen, Tavares, Zenna, Tolias, Andreas
As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviat
Externí odkaz:
http://arxiv.org/abs/2411.18526
We present a method to engineer various zero-energy localized states on disorder-free hypercube graphs. Previous works have already indicated that disorder is not essential for observing localization phenomena in noninteracting systems, with some pro
Externí odkaz:
http://arxiv.org/abs/2410.10763
Autor:
article Editorial
Publikováno v:
Регуляторные исследования и экспертиза лекарственных средств, Vol 12, Iss 2 (2022)
Externí odkaz:
https://doaj.org/article/5629a4289b2e4e03a18efa15d699ae94
Autor:
Arkhipov, Pavel, Kolmogorov, Vladimir
The $k$-forest problem asks to find $k$ forests in a graph $G$ maximizing the number of edges in their union. We show how to solve this problem in $O(k^3 \min\{kn, m\} \log^2 n + k \cdot{\rm MAXFLOW}(m, m) \log n)$ time, breaking the $O_k(n^{3/2})$ c
Externí odkaz:
http://arxiv.org/abs/2409.20314
Autor:
Arkhipov, Pavel, Kolmogorov, Vladimir
We consider two problems for a directed graph $G$, which we show to be closely related. The first one is to find $k$ edge-disjoint forests in $G$ of maximal size such that the indegree of each vertex in these forests is at most $k$. We describe a min
Externí odkaz:
http://arxiv.org/abs/2409.14881