Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Arkadiy Dushatskiy"'
Publikováno v:
ACM Transactions on Evolutionary Learning and Optimization. 1:1-23
Surrogate-assisted evolutionary algorithms have the potential to be of high value for real-world optimization problems when fitness evaluations are expensive, limiting the number of evaluations that can be performed. In this article, we consider the
Publikováno v:
GECCO 2021-Proceedings of the 2021 Genetic and Evolutionary Computation Conference, 583-591
STARTPAGE=583;ENDPAGE=591;TITLE=GECCO 2021-Proceedings of the 2021 Genetic and Evolutionary Computation Conference
GECCO
GECCO 2021-Proceedings of the 2021 Genetic and Evolutionary Computation Conference
STARTPAGE=583;ENDPAGE=591;TITLE=GECCO 2021-Proceedings of the 2021 Genetic and Evolutionary Computation Conference
GECCO
GECCO 2021-Proceedings of the 2021 Genetic and Evolutionary Computation Conference
We propose a novel surrogate-assisted Evolutionary Algorithm for solving expensive combinatorial optimization problems. We integrate a surrogate model, which is used for fitness value estimation, into a state-of-the-art P3-like variant of the Gene-Po
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::414d980b368d72d34b05a798ca942ede
http://www.scopus.com/inward/record.url?scp=85110096162&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=85110096162&partnerID=8YFLogxK
Publikováno v:
GECCO
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference, 753-761
STARTPAGE=753;ENDPAGE=761;TITLE=GECCO 2019-Proceedings of the 2019 Genetic and Evolutionary Computation Conference
We introduce a novel surrogate-assisted Genetic Algorithm (GA) for expensive optimization of problems with discrete categorical variables. Specifically, we leverage the strengths of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), a state
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55de33ddd6129a166eb055839f12128b
https://ir.cwi.nl/pub/28897
https://ir.cwi.nl/pub/28897