Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Arip Asadulaev"'
Publikováno v:
IEEE Access, Vol 8, Pp 211951-211960 (2020)
The outcome of Jacobian singular values regularization was studied for supervised learning problems. In supervised learning settings for linear and nonlinear networks, Jacobian regularization allows for faster learning. It also was shown that Jacobia
Externí odkaz:
https://doaj.org/article/6d8ccc5c5ba14f948b2d50bf8e626e75
Publikováno v:
2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence.
Autor:
Alex Zhavoronkov, Alexander Aliper, Yan A. Ivanenkov, Arip Asadulaev, Anastasia V. Aladinskaya, Quentin Vanhaelen, Evgeny Putin
Publikováno v:
Molecular Pharmaceutics. 15:4386-4397
In this article, we propose the deep neural network Adversarial Threshold Neural Computer (ATNC). The ATNC model is intended for the de novo design of novel small-molecule organic structures. The model is based on generative adversarial network archi
Autor:
Yan A. Ivanenkov, Alex Zhavoronkov, Mark S. Veselov, Rim Shayakhmetov, Anastasiya V Aladinskaya, Daniil Polykovskiy, Victor A Terentiev, Vladimir A. Aladinskiy, Bogdan A Zagribelnyy, Tao Guo, Artem Zholus, Yury Volkov, Alexander Zhebrak, Lennart H Lee, Li Xing, Lidiya I Minaeva, Richard Soll, Alán Aspuru-Guzik, Alexander Aliper, David Madge, Maksim Kuznetsov, Arip Asadulaev
Publikováno v:
Nature Biotechnology. 37:1038-1040
We have developed a deep generative model, generative tensorial reinforcement learning (GENTRL), for de novo small-molecule design. GENTRL optimizes synthetic feasibility, novelty, and biological activity. We used GENTRL to discover potent inhibitors
Autor:
Benjamin Sanchez-Lengeling, Yan A. Ivanenkov, Evgeny Putin, Vladimir A. Aladinskiy, Arip Asadulaev, Alex Zhavoronkov, Alán Aspuru-Guzik
Publikováno v:
Journal of chemical information and modeling. 58(6)
In silico modeling is a crucial milestone in modern drug design and development. Although computer-aided approaches in this field are well-studied, the application of deep learning methods in this research area is at the beginning. In this work, we p