Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Arif Razzaq"'
Autor:
Marwah Sattar Hanoon, Ali Najah Ahmed, Pavitra Kumar, Arif Razzaq, Nur’atiah Zaini, Yuk Feng Huang, Mohsen Sherif, Ahmed Sefelnasr, Kwok wing Chau, Ahmed El-Shafie
Publikováno v:
Engineering Applications of Computational Fluid Mechanics, Vol 16, Iss 1, Pp 1673-1689 (2022)
Modeling wind speed has a significant impact on wind energy systems and has attracted attention from numerous researchers. The prediction of wind speed is considered a challenging task because of its natural nonlinear and random characteristics. The
Externí odkaz:
https://doaj.org/article/74aa25954fad41569ea114f37ecafc06
Autor:
Marwah Sattar Hanoon, Ali Najah Ahmed, Arif Razzaq, Atheer Y. Oudah, Ahmed Alkhayyat, Yuk Feng Huang, Pavitra kumar, Ahmed El-Shafie
Publikováno v:
Ain Shams Engineering Journal, Vol 14, Iss 4, Pp 101919- (2023)
Machine learning models have been effectively applied to predict certain variable in several engineering applications where the variable is highly stochastic in nature and complex to identify utilizing the classical mathematical models. Therefore, th
Externí odkaz:
https://doaj.org/article/ee8a3491a342474d867ca1c3ff0ff1c8
Autor:
Marwah Sattar Hanoon, Ali Najah Ahmed, Nur’atiah Zaini, Arif Razzaq, Pavitra Kumar, Mohsen Sherif, Ahmed Sefelnasr, Ahmed El-Shafie
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-19 (2021)
Abstract Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R
Externí odkaz:
https://doaj.org/article/960c7fe548c048e181298b3277450f28
Autor:
Marwah Sattar Hanoon, Amr Moftah Ammar, Ali Najah Ahmed, Arif Razzaq, Ahmed H. Birima, Pavitra Kumar, Mohsen Sherif, Ahmed Sefelnasr, Ahmed El-Shafie
Publikováno v:
Frontiers in Environmental Science, Vol 10 (2022)
Evaluating the quality of groundwater in a specific aquifer could be a costly and time-consuming procedure. An attempt was made in this research to predict various parameters of water quality called Fe, Cl, SO4, pH and total hardness (as CaCO3) by me
Externí odkaz:
https://doaj.org/article/161ae78945d541a19abfaf229b942dc2
Autor:
Ali Najah Ahmed, Arif Razzaq, Ahmed H. Birima, Alharazi Abdulhadi Abdullatif B, Marwah Sattar Hanoon, Ahmed El-Shafie
Publikováno v:
Earth Science Informatics. 15:91-104
Accurate and reliable suspended sediment load (SSL) prediction models are necessary for the planning and management of water resource structures. In this study, four machine learning techniques, namely Gradient boost regression (GBT), Random Forest (
Publikováno v:
International Conference on Artificial Intelligence for Smart Community ISBN: 9789811621826
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bbf09cb9cd795198ef2640a665ce5477
https://doi.org/10.1007/978-981-16-2183-3_30
https://doi.org/10.1007/978-981-16-2183-3_30
Autor:
Ahmed H. Birima, Chow Ming Fai, Arif Razzaq, Ali Najah Ahmed, Ahmed Sefelnasr, Marwah Sattar Hanoon, Mohsen Sherif, Ahmed El-Shafie
Publikováno v:
Water, Air, & Soil Pollution. 232
This study reported the state of the art of different artificial intelligence (AI) methods for groundwater quality (GWQ) modeling and introduce a brief description of common AI approaches. In addtion a bibliographic review of practices over the past
Autor:
Pavitra Kumar, Nur’atiah Zaini, Ahmed El-Shafie, Arif Razzaq, Marwah Sattar Hanoon, Ali Najah Ahmed, Ahmed Sefelnasr, Mohsen Sherif
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-19 (2021)
Scientific Reports, Vol 11, Iss 1, Pp 1-19 (2021)
Accurately predicting meteorological parameters such as air temperature and humidity plays a crucial role in air quality management. This study proposes different machine learning algorithms: Gradient Boosting Tree (G.B.T.), Random forest (R.F.), Lin
Autor:
Ali A. Mohammed, Mohammed Saad Talib, Aslinda Hassan, Mohanad Faeq Ali, Arif Razzaq, Zuraida Abal Abas
The development of the technology and connected devices such as internet of things (IoT), internet of vehicles (IoV), and 5G motivate the researchers to give more attention in the field. Clustering is a key factor in vehicular ad-hoc network (VANET)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::67fb2d33b177f8b83cf4bf9b980a69ad
https://doi.org/10.21203/rs.3.rs-220323/v1
https://doi.org/10.21203/rs.3.rs-220323/v1