Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Ariel Yadin"'
Autor:
Yair Hartman, Ariel Yadin
Publikováno v:
Compositio Mathematica. 154:2239-2265
We study the Furstenberg-entropy realization problem for stationary actions. It is shown that for finitely supported probability measures on free groups, any a-priori possible entropy value can be realized as the entropy of an ergodic stationary acti
Autor:
Ariel Yadin, Nathanaël Berestycki
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 55, no. 2 (2019), 835-861
Nous introduisons une mesure de Gibbs sur les chemins de longueur $t$ dans le reseau Euclidien de dimension $d$, telle qu’un chemin donne est penalise par un facteur proportionnel a la taille de sa frontiere et l’inverse d’une temperature $\bet
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf4d26a6cbc780f6fb2697376720f949
https://projecteuclid.org/euclid.aihp/1557820833
https://projecteuclid.org/euclid.aihp/1557820833
Publikováno v:
Transactions of the American Mathematical Society. 369:2205-2229
Alexopoulos proved that on a finitely generated virtually nilpotent group, the restriction of a harmonic function of polynomial growth to a torsion-free nilpotent subgroup of finite index is always a polynomial in the Mal’cev coordinates of that su
Autor:
Itai Benjamini, Ariel Yadin
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 52, no. 3 (2016), 1050-1060
On etudie la mesure harmonique sur les graphes finis en s’interessant de pres au cas des expanseurs, c’est a dire des graphes dont le trou spectral est positif. On montrera que dans ce cas, pour tout sous-ensemble pas trop gros, la mesure harmoni
Autor:
Ariel Yadin, Aran Raoufi
A conjecture of Benjamini & Schramm from 1996 states that any finitely generated group that is not a finite extension of $\mathbb{Z} $ has a non-trivial percolation phase. Our main results prove this conjecture for certain groups, and in particular p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c813a1c2dca92f4020355ffb6d7793af
Autor:
Ariel Yadin
Publikováno v:
Israel Journal of Mathematics. 174:203-219
Let A,B be two random subsets of a finite group G. We consider the event that the products of elements from A and B span the whole group; i.e. (AB union BA) = G. The study of this event gives rise to a group invariant we call \Theta(G). \Theta(G) is
Publikováno v:
Combinatorics, Probability and Computing. 17:487-494
We provide an estimate, sharp up to poly-logarithmic factors, of the asymptotic almost sure mixing time of the graph created by long-range percolation on the cycle of length N ($\Integer/N\Integer$). While it is known that the asymptotic almost sure
Publikováno v:
Ann. Appl. Probab. 25, no. 6 (2015), 3139-3161
We study a model of growing population that competes for resources. At each time step, all existing particles reproduce and the offspring randomly move to neighboring sites. Then at any site with more than one offspring, the particles are annihilated
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::85dde6a56f370d9ae923c743769e5752
http://projecteuclid.org/euclid.aoap/1443703771
http://projecteuclid.org/euclid.aoap/1443703771
Publikováno v:
Ann. Probab. 43, no. 5 (2015), 2332-2373
We study harmonic functions on random environments with particular emphasis on the case of the infinite cluster of supercritical percolation on $\mathbb{Z}^d$. We prove that the vector space of harmonic functions growing at most linearly is $(d+1)$-d
Autor:
Scott Sheffield, Ariel Yadin
Publikováno v:
Institute of Mathematical Statistics
Electron. J. Probab.
Electron. J. Probab.
We study "tricolor percolation" on the regular tessellation of R[superscript 3] by truncated octahedra, which is the three-dimensional analog of the hexagonal tiling of the plane. We independently assign one of three colors to each cell according to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0f2554a37baab192989da18c304183d
https://orcid.org/0000-0002-5951-4933
https://orcid.org/0000-0002-5951-4933