Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Ariel Pacetti"'
Publikováno v:
International Journal of Number Theory. 19:1129-1165
The purpose of this paper is to show how the modular method together with different techniques can be used to prove non-existence of primitive non-trivial solutions of the equation [Formula: see text] for square-free values [Formula: see text]. The k
Autor:
Ariel Pacetti, Angel Villanueva
Publikováno v:
Glasgow Mathematical Journal. :1-27
A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$ , with $\textrm{Disc}(\,f)\neq 0$ . The purpose of this article is to describe the Galois re
Publikováno v:
Mathematics of Computation.
In this article we study the equations x 4 + d y 2 = z p x^4+dy^2=z^p and x 2 + d y 6 = z p x^2+dy^6=z^p for positive square-free values of d d . A Frey curve over Q ( − d ) \mathbb {Q}(\sqrt {-d}) is attached to each primitive solution, which happ
Publikováno v:
Mathematical Research Letters. 28:1633-1659
Let $K$ be a number field and $E/K$ be an elliptic curve with no $2$-torsion points. In the present article we give lower and upper bounds for the $2$-Selmer rank of $E$ in terms of the $2$-torsion of a narrow class group of a certain cubic extension
Publikováno v:
Algebra Number Theory 13, no. 5 (2019), 1145-1195
Generalizing the method of Faltings–Serre, we rigorously verify that certain abelian surfaces without extra endomorphisms are paramodular. To compute the required Hecke eigenvalues, we develop a method of specialization of Siegel paramodular forms
Publikováno v:
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Scopus-Elsevier
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Scopus-Elsevier
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn'e method to induced four-di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::190ba50f06e143f1d4250cbc5b811e34
http://hdl.handle.net/2072/419040
http://hdl.handle.net/2072/419040
Publikováno v:
Arithmetic Geometry, Number Theory, and Computation ISBN: 9783030809133
We study the rational Bianchi newforms (weight 2, trivial character, with rational Hecke eigenvalues) in the LMFDB that are not associated to elliptic curves, but instead to abelian surfaces with quaternionic multiplication. Two of these examples exh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::71861d369f89049ceadc9182a84c3955
https://doi.org/10.1007/978-3-030-80914-0_11
https://doi.org/10.1007/978-3-030-80914-0_11
Autor:
Ariel Pacetti, Daniel Kohen
Publikováno v:
Comptes Rendus Mathematique. 356:973-983
Let $E$ be a rational elliptic curve and let $p$ be an odd prime of additive reduction. Let $K$ be an imaginary quadratic field and fix a positive integer $c$ prime to the conductor of $E$. The main goal of the present article is to define an anticyc
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Mathematische Zeitschrift
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Mathematische Zeitschrift
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are "paritious" -- all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8dd5103778b049209ed13cf0e005a02
http://wrap.warwick.ac.uk/111788/7/WRAP-non-partitous-hilbert-modular-forms-Loeffler-2018.pdf
http://wrap.warwick.ac.uk/111788/7/WRAP-non-partitous-hilbert-modular-forms-Loeffler-2018.pdf
Autor:
José Ignacio Burgos Gil, Ariel Pacetti
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this article we give an analogue of Hecke and Sturm bounds for Hilbert modular forms over real quadratic fields. Let $K$ be a real quadratic field and $\Om_K$ its ring of integers. Let $\Gamma$ be a congruence subgroup of $\SL_2(\Om_K)$ and $M_{(k