Zobrazeno 1 - 10
of 149
pro vyhledávání: '"Ariel Martin"'
Autor:
Ariel Martin Salort
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 312,, Pp 1-13 (2016)
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates
Externí odkaz:
https://doaj.org/article/dd84898a6b4c4a27b6d473aadc480893
The purpose of this short note is to present a simplified proof of Serre's modularity conjecture using the strong modularity lifting results currently available. This second version includes extra details on definitions and proofs than the previous o
Externí odkaz:
http://arxiv.org/abs/2108.07577
Publikováno v:
Asymptotic Analysis, vol. 126, no. 3-4, pp. 201-214, 2022
In this note we prove the validity of the Maz'ya-Shaposhnikova formula in magnetic fractional Orlicz-Sobolev spaces. This complements a previous study of the limit as $s \uparrow 1$ performed by the second author in [21].
Externí odkaz:
http://arxiv.org/abs/2005.04662
In this note we study the limit as $s\downarrow 0$ of fractional Orlicz-Sobolev seminorms in Carnot groups. This closes the study started in [10]
Comment: Paper retired due to a technical problem with the main proof
Comment: Paper retired due to a technical problem with the main proof
Externí odkaz:
http://arxiv.org/abs/2003.13082
In this article we define a class of fractional Orlicz-Sobolev spaces on Carnot groups and, in the spirit of the celebrated results of Bourgain-Brezis-Mironescu and of Maz'ya-Shaposhnikova, we study the asymptotic behavior of the Orlicz functionals w
Externí odkaz:
http://arxiv.org/abs/1912.08357
In this work we study a general shape optimization problem where the state equation is given in terms of a nonlocal operator. Examples of the problems considered are monotone combinations of fractional eigenvalues. Moreover, we also analyze the trans
Externí odkaz:
http://arxiv.org/abs/1612.08717
In this work we study the asymptotic behavior of the curves of the Fu{\v{c}}{\'{\i}}k spectrum for weighted second order linear ordinary differential equations. We prove a Weyl type asymptotic behavior of the hyperbolic type curves in the spectrum in
Externí odkaz:
http://arxiv.org/abs/1609.08193
In this work we study the convergence of an homogenization problem for half-eigenvalues and Fu\v{c}\'ik eigencurves. We provide quantitative bounds on the rate of convergence of the curves for periodic homogenization problems.
Comment: 11 pages
Comment: 11 pages
Externí odkaz:
http://arxiv.org/abs/1601.07245
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Proceedings of the American Mathematical Society, 2016 Apr 01. 144(4), 1669-1680.
Externí odkaz:
https://www.jstor.org/stable/procamermathsoci.144.4.1669