Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Ariane M. Masuda"'
Publikováno v:
Optimization. 71:419-437
We propose an extension of the real-valued conjugate directions method for unconstrained quadratic multiobjective problems. As in the single-valued counterpart, the procedure requires a set of dire...
Publikováno v:
Proceedings of the American Mathematical Society. 148:3775-3786
For positive integers u u and v v , let L u = [ 1 a m p ; 0 u a m p ; 1 ] L_u=\left [\begin {smallmatrix} 1 & 0 \\ u & 1 \end {smallmatrix}\right ] and R v = [ 1 a m p ; v 0 a m p ; 1 ] R_v=\left [\begin {smallmatrix} 1 & v \\ 0 & 1 \end {smallmatrix
Let $\mathbb{F}_q$ be the finite field of order $q$, and $\mathbb P^1(\mathbb{F}_q) = \mathbb F_q\cup \{\infty\}$. Write $(x+\sqrt y)^m$ as $N(x,y)+D(x,y)\sqrt{y}$. For $m\in\mathbb N$ and $a \in \mathbb{F}_q$, the R\'edei function $R_{m,a}\colon \ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ade6a290c574db6054fbacc10edc4cb
http://arxiv.org/abs/2110.02143
http://arxiv.org/abs/2110.02143
Publikováno v:
Finite Fields and Their Applications. 79:102003
Let $${\mathbb {F}}_{q}$$ be a finite field of odd characteristic. We study Redei functions that induce permutations over $$\mathbb {P}^1({\mathbb {F}}_{q})$$ whose cycle decomposition contains only cycles of length 1 and j, for an integer $$j\ge 2$$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cdf7fe9443410596a70e27f9c6d9543b
http://arxiv.org/abs/2007.00123
http://arxiv.org/abs/2007.00123
Publikováno v:
Combinatorial and Additive Number Theory III ISBN: 9783030311056
We fix integers \(u,v \ge 1\), and consider an infinite binary tree \(\mathscr {T}^{(u,v)}(z)\) with a root node whose value is a positive rational number z. For every vertex a/b, we label the left child as \(a/(ua+b)\) and right child as \((a+vb)/b\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0181f27e3d665c0a75c110d11272dbb4
https://doi.org/10.1007/978-3-030-31106-3_10
https://doi.org/10.1007/978-3-030-31106-3_10
We consider the algebraic curve defined by y m = f ( x ) where m ≥ 2 and f ( x ) is a rational function over F q . We extend the concept of pure gap to c-gap and obtain a criterion to decide when an s-tuple is a c-gap at s rational places on the cu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9d036bb663bb699fa4ec441737c2861
Publikováno v:
Journal of Algebra. 431:107-126
The basic character theory of finite monoids over the complex numbers was developed in the sixties and seventies based on work of Munn, Ponizovskiĭ, McAlister, Rhodes and Zalcstein. In particular, McAlister determined the space of functions spanned
Autor:
Ariane M. Masuda, Michael E. Zieve
Publikováno v:
Transactions of the American Mathematical Society. 361:4169-4180
We prove that if x m + a x n x^m + ax^n permutes the prime field F p \mathbb {F}_p , where m > n > 0 m>n>0 and a ∈ F p ∗ a\in \mathbb {F}_p^* , then gcd ( m − n , p − 1 ) > p − 1 \gcd (m-n,p-1) > \sqrt {p}-1 . Conversely, we prove that if q
Publikováno v:
IEEE Transactions on Computers. 57:990-1001
In this paper, we extend previously known results on the complexities of normal elements. Using algorithms that exhaustively test field elements, we are able to provide the distribution of the complexity of normal elements for binary fields with degr