Zobrazeno 1 - 10
of 87
pro vyhledávání: '"Argyros, S."'
Recently, W. Cuellar Carrera, N. de Rancourt, and V. Ferenczi introduced the notion of $d_2$-hereditarily indecomposable Banach spaces, i.e., non-Hilbertian spaces that do not contain the direct sum of any two non-Hilbertian subspaces. They posed the
Externí odkaz:
http://arxiv.org/abs/2012.06286
We investigate the following property for Banach spaces. A Banach space $X$ satisfies the Uniform Approximation on Large Subspaces (UALS) if there exists $C>0$ with the following property: for any $A\in\mathcal{L}(X)$ and convex compact subset $W$ of
Externí odkaz:
http://arxiv.org/abs/1712.07638
Autor:
Vasileiou, N.G.C., Chatzopoulos, D.C. *, Cripps, P.J. *, Ioannidi, K.S. *, Gougoulis, D.A., Chouzouris, T.M., Lianou, D.T., Gonzalez-Valerio, T. Calvo, Vallverdu, R. Guix, Argyros, S., Cesio, M., Font, I., Mavrogianni, V.S., Petinaki, E., Fthenakis, G.C.
Publikováno v:
In Journal of Dairy Science October 2019 102(10):9328-9344
Publikováno v:
Israel Journal of Mathematics 135 (2003), 29-81
For $\Omega$ bounded and open subset of $\mathbb{R}^{d_{0}}$ and $X$ a reflexive Banach space with 1-symmetric basis, the function space $JF_{X}(\Omega)$ is defined. This class of spaces includes the classical James function space. Every member of th
Externí odkaz:
http://arxiv.org/abs/1210.2379
We introduce the higher order spreading models associated to a Banach space $X$. Their definition is based on $\ff$-sequences $(x_s)_{s\in\ff}$ with $\ff$ a regular thin family and the plegma families. We show that the higher order spreading models o
Externí odkaz:
http://arxiv.org/abs/1202.6390
Extending the classical notion of the spreading model, the $k$-spreading models of a Banach space are introduced, for every $k\in\mathbb{N}$. The definition, which is based on the $k$-sequences and plegma families, reveals a new class of spreading se
Externí odkaz:
http://arxiv.org/abs/1105.2732
We extend the classical Brunel-Sucheston definition of the spreading model by introducing the $\mathcal{F}$-sequences $(x_s)_{s\in\mathcal{F}}$ in a Banach space and the plegma families in $\mathcal{F}$ where $\mathcal{F}$ is a regular thin family. T
Externí odkaz:
http://arxiv.org/abs/1006.0957
To each function $f$ of bounded quadratic variation ($f\in V_2$) we associate a Hausdorff measure $\mu_f$. We show that the map $f\to\mu_f$ is locally Lipschitz and onto the positive cone of $\mathcal{M}[0,1]$. We use the measures $\{\mu_f:f\in V_2\}
Externí odkaz:
http://arxiv.org/abs/0903.2809