Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Argiris Sakellariou"'
Autor:
Argiris Sakellariou, George M. Spyrou
Publikováno v:
BMC Bioinformatics
Background So far many algorithms have been proposed towards the detection of significant genes in microarray analysis problems. Several of those approaches are freely available as R-packages though their engagement in gene expression analysis by non
Autor:
Alexander J. Stratigos, Lars Bertram, Marilena M. Bourdakou, Foteini Chatzinasiou, I. Stefanaki, John P. A. Ioannidis, Emmanouil Athanasiadis, Christina M. Lill, Evangelos Evangelou, Katerina P. Kypreou, Argiris Sakellariou, Kyriaki Antonopoulou, George M. Spyrou
Publikováno v:
Database : The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation
The publicly available online database MelGene provides a comprehensive, regularly updated, collection of data from genetic association studies in cutaneous melanoma (CM), including random-effects meta-analysis results of all eligible polymorphisms.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::904ef3d90e35aeb69c3e287f87363d63
https://hdl.handle.net/11858/00-001M-0000-0026-AFF2-511858/00-001M-0000-0026-AFF4-1
https://hdl.handle.net/11858/00-001M-0000-0026-AFF2-511858/00-001M-0000-0026-AFF4-1
Publikováno v:
BMC Bioinformatics, Vol 13, Iss 1, p 270 (2012)
BMC Bioinformatics; Vol 13
BMC Bioinformatics
BMC Bioinformatics; Vol 13
BMC Bioinformatics
Background A feature selection method in microarray gene expression data should be independent of platform, disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there should be clusters of
Publikováno v:
2009 9th International Conference on Information Technology and Applications in Biomedicine.
The investigation of potential microarray markers, which in turn will speed up the molecular analysis and provide reliable results on the benefit of patient care is of significant importance. Feature selection techniques, which aim at minimizing the