Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Aretaki, Aikaterini"'
Publikováno v:
Journal of Scientific Computing, 91, 48 (2022)
In this work, we analyze an unfitted discontinuous Galerkin discretization for the numerical solution of the Stokes system based on equal higher-order discontinuous velocities and pressures. This approach combines the best from both worlds, firstly t
Externí odkaz:
http://arxiv.org/abs/2006.00435
This work investigates an elliptic optimal control problem defined on uncertain domains and discretized by a fictitious domain finite element method and cut elements. Key ingredients of the study are to manage cases considering the usually computatio
Externí odkaz:
http://arxiv.org/abs/2003.00352
Publikováno v:
In Linear Algebra and Its Applications 15 June 2023 667:165-191
Publikováno v:
In Journal of Computational and Applied Mathematics 1 October 2022 412
Autor:
Adam Maria, Aretaki Aikaterini
Publikováno v:
Special Matrices, Vol 10, Iss 1, Pp 308-326 (2022)
In this article, we determine upper and lower bounds for the spectral radius of nonnegative matrices. Introducing the notion of average 4-row sum of a nonnegative matrix, we extend various existing formulas for spectral radius bounds. We also refer t
Externí odkaz:
https://doaj.org/article/842e4c9fbc314a298f4220f5676eea99
Autor:
Aretaki, Aikaterini, Maroulas, John
The $k$-rank numerical range $\Lambda_{k}(A)$ is expressed via an intersection of a countable family of numerical ranges $\{F(M^{*}_{\nu}AM_{\nu})\}_{\nu\in\mathbb{N}}$ with respect to $n\times (n-k+1)$ isometries $M_{\nu}$. This implication for $\La
Externí odkaz:
http://arxiv.org/abs/1104.1338
Autor:
Aretaki, Aikaterini, Maroulas, John
The notion of the higher rank numerical range $\Lambda_{k}(L(\lambda))$ for matrix polynomials $L(\lambda)=A_{m}\lambda^{m}+...+A_{1}\lambda+A_{0}$ is introduced here and some fundamental geometrical properties are investigated. Further, the sharp po
Externí odkaz:
http://arxiv.org/abs/1104.1341
Autor:
Aretaki, Aikaterini, Maroulas, John
In this article the well known "Perron-Frobenius theory" is investigated involving the higher rank numerical range $\Lambda_{k}(A)$ of an irreducible and entrywise nonnegative matrix $A$ and extending the notion of elements of maximum modulus in $\La
Externí odkaz:
http://arxiv.org/abs/1104.1328
Autor:
Aretaki, Aikaterini, Maroulas, John
A presentation of numerical range for rectangular matrices is undertaken in this paper, introducing two different definitions and elaborating basic properties. Then we are extended to the treatment of rank-k numerical range.
Externí odkaz:
http://arxiv.org/abs/0904.4325
Publikováno v:
In Linear Algebra and Its Applications 15 July 2018 549:256-275