Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Ardehali, Arash Arabi"'
It has been recently shown that the celebrated SCFT$_4$/VOA$_2$ correspondence can be bridged via three-dimensional field theories arising from a specific R-symmetry twisted circle reduction. We apply this twisted reduction to the $(A_1,A_{n})$ and $
Externí odkaz:
http://arxiv.org/abs/2411.00766
The high-temperature limit of the superconformal index, especially on higher sheets, often captures useful universal information about a theory. In 4d $\mathcal{N}=2$ superconformal field theories with fractional r-charges, there exists a special not
Externí odkaz:
http://arxiv.org/abs/2409.18130
High-temperature ($q\to1$) asymptotics of 4d superconformal indices of Lagrangian theories have been recently analyzed up to exponentially suppressed corrections. Here we use RG-inspired tools to extend the analysis to the exponentially suppressed te
Externí odkaz:
http://arxiv.org/abs/2308.09738
Autor:
Ardehali, Arash Arabi, Krishna, Hare
We consider the $\mathcal{N}=(2,2)$ AdS$_3$/CFT$_2$ dualities proposed by Eberhardt, where the bulk geometry is AdS$_3\times(S^3\times T^4)/\mathbb{Z}_k$, and the CFT is a deformation of the symmetric orbifold of the supersymmetric sigma model $T^4/\
Externí odkaz:
http://arxiv.org/abs/2307.15037
Autor:
Ardehali, Arash Arabi, Hong, Junho
Publikováno v:
J. High Energ. Phys. 2022, 62 (2022)
We present a prototype for Wilsonian analysis of asymptotics of supersymmetric partition functions of non-abelian gauge theories. Localization allows expressing such partition functions as an integral over a BPS moduli space. When the limit of intere
Externí odkaz:
http://arxiv.org/abs/2110.01538
Publikováno v:
JHEP02 (2022) 188
We consider $\mathcal{N}=(2,2)$ AdS$_3$/CFT$_2$ dualities proposed in the large central charge limit ($c\to\infty$) by Eberhardt. Here we propose the associated D1-D5 systems to be orbifolds of the standard $\mathcal{N}=(4,4)$ systems, thereby elevat
Externí odkaz:
http://arxiv.org/abs/2106.11002
Autor:
Ardehali, Arash Arabi, Murthy, Sameer
We consider the $S^3\times S^1$ superconformal index $\mathcal{I}(\tau)$ of 4d $\mathcal{N}=1$ gauge theories. The Hamiltonian index is defined in a standard manner as the Witten index with a chemical potential $\tau$ coupled to a combination of angu
Externí odkaz:
http://arxiv.org/abs/2104.02051
Publikováno v:
JHEP07(2020)073
We study the Cardy-like asymptotics of the 4d $\mathcal N=4$ index and demonstrate the existence of partially deconfined phases where the asymptotic growth of the index is not as rapid as in the fully deconfined case. We then take the large-$N$ limit
Externí odkaz:
http://arxiv.org/abs/1912.04169
Publikováno v:
JHEP08(2020)053
We revisit the vacuum structure of the $\mathcal{N}=1$ Intriligator-Seiberg-Shenker model on $\mathbb{R}^3\times S^1$. Guided by the Cardy-like asymptotics of its Romelsberger index, and building on earlier semi-classical results by Poppitz and \"{U}
Externí odkaz:
http://arxiv.org/abs/1912.02732
Autor:
Ardehali, Arash Arabi
Publikováno v:
JHEP06(2019)134
Choi, Kim, Kim, and Nahmgoong have recently pioneered analyzing a Cardy-like limit of the superconformal index of the 4d $\mathcal{N}=4$ theory with complexified fugacities which encodes the entropy of the dual supersymmetric AdS$_5$ blackholes. Here
Externí odkaz:
http://arxiv.org/abs/1902.06619