Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Ardakov, Konstantin"'
Autor:
Ardakov, Konstantin, Berger, Laurent
We show that the coefficients of a power series occurring in $p$-adic Fourier theory for $\mathbf{Q}_{p^2}$ have valuations that are given by an intriguing formula.
Comment: 8 pages
Comment: 8 pages
Externí odkaz:
http://arxiv.org/abs/2405.05726
Autor:
Ardakov, Konstantin, Wadsley, Simon
Let $F$ be a finite extension of $\mathbb{Q}_p$, let $\Omega_F$ be Drinfeld's upper half-plane over $F$ and let $G^0$ the subgroup of $GL_2(F)$ consisting of elements whose determinant has norm $1$. Let $\mathscr{L}$ be a torsion $G^0$-equivariant li
Externí odkaz:
http://arxiv.org/abs/2312.12395
Autor:
Ardakov, Konstantin, Wadsley, Simon J.
Let $F$ be a finite extension of $\mathbb{Q}_p$, let $\Omega_F$ be Drinfeld's upper half-plane over $F$ and let $G^0$ the subgroup of $GL_2(F)$ consisting of elements whose determinant has norm $1$. By working locally on $\Omega_F$, we construct and
Externí odkaz:
http://arxiv.org/abs/2309.05462
Autor:
Ardakov, Konstantin, Schneider, Peter
Let $p \geq 5$ be a prime number and let $G = SL_2(\mathbb{Q}_p)$. Let $\Xi$ = Spec$(Z)$ denote the spectrum of the centre $Z$ of the pro-$p$ Iwahori Hecke algebra of $G$ with coefficients in a field $k$ of characteristic $p$. Let $\mathcal{R} \subse
Externí odkaz:
http://arxiv.org/abs/2304.02585
Autor:
Ardakov, Konstantin, Berger, Laurent
This paper is motivated by an open question in $p$-adic Fourier theory, that seems to be more difficult than it appears at first glance. Let $L$ be a finite extension of $\mathbb{Q}_p$ with ring of integers $o_L$ and let $\mathbb{C}_p$ denote the com
Externí odkaz:
http://arxiv.org/abs/2301.13650
Autor:
Ardakov, Konstantin, Schneider, Peter
The center $Z(\mathcal{A})$ of an abelian category $\mathcal{A}$ is the endomorphism ring of the identity functor on that category. A localizing subcategory of a Grothendieck category $\mathcal{C}$ is said to be stable if it is stable under essential
Externí odkaz:
http://arxiv.org/abs/2210.12419
Autor:
Ardakov, Konstantin, Schneider, Peter
Let $G$ be a locally profinite group and let $k$ be a field of positive characteristic $p$. Let $Z(G)$ denote the center of $G$ and let $\mathfrak{Z}(G)$ denote the Bernstein center of $G$, that is, the $k$-algebra of natural endomorphisms of the ide
Externí odkaz:
http://arxiv.org/abs/2105.06128
Autor:
Ardakov, Konstantin
We prove an Induction Equivalence and a Kashiwara Equivalence for coadmissible equivariant D-modules on rigid analytic spaces. This allows us to completely classify such objects with support in a single orbit of a classical point with co-compact stab
Externí odkaz:
http://arxiv.org/abs/2009.02981
We develop a dimension theory for coadmissible D-cap-modules on rigid analytic spaces and study those which are of minimal dimension, in analogy to the theory of holonomic D-modules in the algebraic setting. We discuss a number of pathologies contain
Externí odkaz:
http://arxiv.org/abs/1904.13280
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.