Zobrazeno 1 - 10
of 234
pro vyhledávání: '"Aram V. Arutyunov"'
Publikováno v:
Axioms, Vol 11, Iss 2, p 40 (2022)
This article concerns the optimality conditions for a smooth optimal control problem with an endpoint and mixed constraints. Under the normality assumption, which corresponds to the full-rank condition of the associated controllability matrix, a simp
Externí odkaz:
https://doaj.org/article/e5b8c8dc9caa44109b3a6132af96f377
Publikováno v:
IFAC-PapersOnLine. 55:231-235
Autor:
S. E. Zhukovskiy, Aram V. Arutyunov
Publikováno v:
Sbornik: Mathematics. 213:1-41
We consider continuous mappings between two Banach spaces that depend on a parameter with values in a topological space. These mappings are assumed to be continuously differentiable for each value of the parameter. Under normality (regularity) assump
Publikováno v:
Russian Universities Reports. Mathematics. :205-213
The paper is devoted to the investigation of the antiperiodic boundary value problem for an implicit nonlinear ordinary differential equation $$f(t,x,\dot x)=0, \quad x(0)+x(\tau)=0.$$ We assume that the mapping $f:\mathbb{R}\times \mathbb{R}^n \time
Autor:
S. E. Zhukovskiy, Aram V. Arutyunov
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 315:19-25
Исследуется вопрос о разрешимости уравнения, порожденного отображением, действующим из метрического пространства в нормированное про
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 315:26-33
Исследуется существование неявной функции, заданной уравнением $G(x,\sigma )=0$, в окрестности анормальной точки $(x_0,\sigma _0)$. Доказано, что если
Publikováno v:
Set-Valued and Variational Analysis. 30:397-423
The fixed points and coincidence points of mappings of v-metric spaces, i.e., sets on which a vector metric is defined, are investigated. The values of such a metric are elements of a cone of a Banach space rather than real nonnegative numbers. Analo
Publikováno v:
2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference).
Autor:
S. E. Zhukovskiy, Aram V. Arutyunov
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 312:7-21
Для нелинейных отображений, действующих в банаховых пространствах, при различных предположениях гладкости рассмотрены теоремы об обра
Autor:
Aram V. Arutyunov, S. E. Zhukovskiy
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 312:1-15
For nonlinear mappings acting in Banach spaces, we examine inverse and implicit function theorems under various smoothness assumptions. For various regularity (normality) conditions imposed on such mappings, we prove that the corresponding equations