Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Aram Ter-Sarkisov"'
Autor:
Ananda Ananda, Kwun Ho Ngan, Cefa Karabağ, Aram Ter-Sarkisov, Eduardo Alonso, Constantino Carlos Reyes-Aldasoro
Publikováno v:
Sensors, Vol 21, Iss 16, p 5381 (2021)
This paper investigates the classification of radiographic images with eleven convolutional neural network (CNN) architectures (GoogleNet, VGG-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, VGG-16, ResNet-101, DenseNet-201 and Inception
Externí odkaz:
https://doaj.org/article/6df7b90eb6ac40e49d6416a4a2cf6bef
Autor:
Aram Ter-Sarkisov
Publikováno v:
IEEE Intelligent Systems. 37:54-64
Autor:
Aram Ter-Sarkisov
Publikováno v:
Applied Intelligence (Dordrecht, Netherlands)
We present COVID-CT-Mask-Net model that predicts COVID-19 from CT scans. The model works in two stages: first, it detects the instances of ground glass opacity and consolidation in CT scans, then predicts the condition from the ranked bounding box de
Autor:
Aram Ter-Sarkisov
Publikováno v:
Applied Soft Computing
We introduce a model that segments lesions and predicts COVID-19 from chest CT scans through the derivation of an affinity matrix between lesion masks. The novelty of the methodology is based on the computation of the affinity between the lesion mask
Autor:
Aram Ter-Sarkisov
We introduce a lightweight model based on Mask R-CNN with ResNet18 and ResNet34 backbone models that segments lesions and predicts COVID-19 from chest CT scans in a single shot. The model requires a small dataset to train: 650 images for the segmenta
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::100e5fcd379a4bcf948d955944f2ecfc
https://doi.org/10.1101/2020.12.01.20241786
https://doi.org/10.1101/2020.12.01.20241786
Autor:
Aram Ter-Sarkisov
We introduce a lightweight Mask R-CNN model that segments areas with the Ground Glass Opacity and Consolidation in chest CT scans. The model uses truncated ResNet18 and ResNet34 nets with a single layer of Feature Pyramid Network as a backbone net, t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5669ec2495a3548d769bcf44de50f9cf
https://doi.org/10.1101/2020.10.30.20223586
https://doi.org/10.1101/2020.10.30.20223586
Publikováno v:
2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA).
This paper investigates the classification of normal and abnormal radiographic images. Eleven convolutional neural network architectures (GoogleNet, Vgg-19, AlexNet, SqueezeNet, ResNet-18, Inception-v3, ResNet-50, Vgg-16, ResNet-101, DenseNet-201 and
Autor:
Aram Ter-Sarkisov
Publikováno v:
ICPRAM2020, 9th International Conference on Pattern Recognition Applications and Methods
ICPRAM
ICPRAM
We introduce a method for transferring style from the logos of heavy metal bands onto corporate logos using a VGG16 network. We establish the contribution of different layers and loss coefficients to the learning of style, minimization of artefacts a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6a66c5c75bfb50bbfe59ab102ad2480
http://arxiv.org/abs/2001.03659
http://arxiv.org/abs/2001.03659
Autor:
Stephen Marsland, Aram Ter-Sarkisov
Publikováno v:
Articles
There has been a variety of crossover operators proposed for Real-Coded Genetic Algorithms (RCGAs), which recombine values from the same location in pairs of strings. In this article we present a recombination operator for RC- GAs that selects the lo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c245bfba90fc21c2b4dbe1be8ad0b9d
https://openaccess.city.ac.uk/id/eprint/21829/1/1604.06607v1.pdf
https://openaccess.city.ac.uk/id/eprint/21829/1/1604.06607v1.pdf
Publikováno v:
Conference papers
CRV
CRV
This paper introduces a new approach to the long-term tracking of an object in a challenging environment. The object is a cow and the environment is an enclosure in a cowshed. Some of the key challenges in this domain are a cluttered background, low
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b11e88b5543bbcbfa450d1b19dde42a
http://arxiv.org/abs/1703.10571
http://arxiv.org/abs/1703.10571