Zobrazeno 1 - 10
of 299
pro vyhledávání: '"Aragon D"'
Autor:
Marín-Aragón, D., Tapia-Ramos, R.
Let $C\subset\mathbb{N}^p$ be an integer polyhedral cone. An affine semigroup $S\subset C$ is a $ C$-semigroup if $| C\setminus S|<+\infty$. This structure has always been studied using a monomial order. The main issue is that the choice of these ord
Externí odkaz:
http://arxiv.org/abs/2409.02299
A sumset semigroup is a non-cancellative commutative monoid obtained from the sumset of finite non-negative integer sets. In this work, an algorithm for computing the ideals associated with some sumset semigroups is provided. Using these ideals, we s
Externí odkaz:
http://arxiv.org/abs/2102.04100
Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ st
Externí odkaz:
http://arxiv.org/abs/2011.09187
Weierstrass semigroups are well-known along the literature. We present a new family of non-Weierstrass semigroups which can be written as an intersection of Weierstrass semigroups. In addition, we provide methods for calculating non-Weierstrass semig
Externí odkaz:
http://arxiv.org/abs/2005.12896
Let $\mathcal C \subset \mathbb N^p$ be a finitely generated integer cone and $S\subset \mathcal C$ be an affine semigroup such that the real cones generated by $\mathcal C$ and by $S$ are equal. The semigroup $S$ is called $\mathcal C$-semigroup if
Externí odkaz:
http://arxiv.org/abs/1907.03276
Let $S=\langle a_1,\ldots,a_p\rangle$ be a numerical semigroup, $s\in S$ and ${\sf z}(s)$ its set of factorizations. The set of length is denoted by ${\mathcal L}(s)=\{{\tt L}(x_1,\dots,x_p)\mid (x_1,\dots,x_p)\in{\sf Z}(s)\}$ where ${\tt L}(x_1,\dot
Externí odkaz:
http://arxiv.org/abs/1906.01266
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We show that the number of numerical semigroups with multiplicity three, four or five and fixed genus is increasing as a function in the genus. To this end we use the Kunz polytope for these multiplicities. Counting numerical semigroups with fixed mu
Externí odkaz:
http://arxiv.org/abs/1803.06879
Autor:
García-García, J. I., Marín-Aragón, D., Moreno-Frías, M. A., Rosales, J. C., Vigneron-Tenorio, A.
Fixed two positive integers m and e, some algorithms for computing the minimal Frobenius number and minimal genus of the set of numerical semigroups with multiplicity m and embedding dimension e are provided. Besides, the semigroups where these minim
Externí odkaz:
http://arxiv.org/abs/1712.05220
Autor:
García-García, J. I., Marín-Aragón, D., Moreno-Frías, M. A., Rosales, J. C., Vigneron-Tenorio, A.
Given $m\in \mathbb{N},$ a numerical semigroup with multiplicity $m$ is called packed numerical semigroup if its minimal generating set is included in $\{m,m+1,\ldots, 2m-1\}.$ In this work, packed numerical semigroups are used to built the set of nu
Externí odkaz:
http://arxiv.org/abs/1710.03523