Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Aradhya, Abhay"'
Among the most insidious attacks on Reinforcement Learning (RL) solutions are training-time attacks (TTAs) that create loopholes and backdoors in the learned behaviour. Not limited to a simple disruption, constructive TTAs (C-TTAs) are now available,
Externí odkaz:
http://arxiv.org/abs/2401.02652
Autor:
DiFrancesco, Michelle, Hofer, Jeremy, Aradhya, Abhay, Rufinus, Jeffrey, Stoddart, John, Finocchiaro, Stephen, Mani, Jabari, Tevis, Sean, Visconti, Michael, Walawender, Griffin, DiFlumeri, Juliette, Fattakhova, Elena, Patil, Sachin P.
Publikováno v:
In Computational Biology and Chemistry February 2023 102
Autor:
Aradhya, Abhay M.S., Ashfahani, Andri, Angelina, Fienny, Pratama, Mahardhika, de Mello, Rodrigo Fernandes, Sundaram, Suresh
Publikováno v:
In Information Sciences August 2022 607:638-653
Publikováno v:
In Expert Systems With Applications 1 November 2021 181
Autor:
Aradhya, Abhay, Bedi, Angad, Cox, Andrew, Khattak, Ridda, Al Hennawi, Hussam, Pirolli, Gregory, Fallis, Rebecca
Publikováno v:
Infectious Diseases in Clinical Practice; September 2024, Vol. 32 Issue: 5 pe1400-e1400, 1p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mengi, Mehak, Malhotra, Deepti
Publikováno v:
Archives of Computational Methods in Engineering; Aug2022, Vol. 29 Issue 5, p2811-2855, 45p
Publikováno v:
EMBC
usc Refereed/Peer-reviewed Accurate detection of neuro-psychological disorders such as Attention Deficit Hyperactivity Disorder (ADHD) using resting state functional Magnetic Resonance Imaging (rs-fMRI) is challenging due to high dimensionality of in
Autor:
Aradhya, Abhay MS, Joglekar, Aditya, Suresh, Sundaram, Pratama, M, AAAI-19 Thirty-Third AAAI Conference on Artificial Intelligence Hawaii, USA 27 January-1 February 2019
usc Refereed/Peer-reviewed Analysis of resting state - functional Magnetic Resonance Imaging (rs-fMRI) data has been a challenging problem due to a high homogeneity, large intra-class variability, limited samples and difference in acquisition technol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1231::235aa90c7d898aebe0e572d2715d4dab
https://hdl.handle.net/11541.2/28079
https://hdl.handle.net/11541.2/28079