Zobrazeno 1 - 10
of 32 229
pro vyhledávání: '"Apollonian"'
Autor:
Andriessen, Louis, Schonberger, Elmer
'The one book about Stravinsky Stravinsky would have liked.'Richard Taruskin
Autor:
Zeng, Hong1 (AUTHOR) hongzeng1@gmail.com
Publikováno v:
Religions. Nov2024, Vol. 15 Issue 11, p1319. 14p.
Autor:
Stange, Katherine E.
These notes cover and expand upon the material for two summer schools: The first, which was held at CIRM, Marseille, France, July 10-14, 2023, as part of "Renormalization and Visualization for packing, billiard and surfaces", was titled "Number theor
Externí odkaz:
http://arxiv.org/abs/2412.02050
Autor:
Friedlander, Holley, Fuchs, Elena, Harris, Piper, Hsu, Catherine, Rickards, James, Sanden, Katherine, Schindler, Damaris, Stange, Katherine E.
Inspired by a question of Sarnak, we introduce the notion of a prime component in an Apollonian circle packing: a maximal tangency-connected subset having all prime curvatures. We also consider thickened prime components, which are augmented by all c
Externí odkaz:
http://arxiv.org/abs/2410.00177
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vytnova, Polina, Wormell, Caroline
The Apollonian gasket is a well-studied circle packing. Important properties of the packing, including the distribution of the circle radii, are governed by its Hausdorff dimension. No closed form is currently known for the Hausdorff dimension, and i
Externí odkaz:
http://arxiv.org/abs/2406.04922
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Physical Review E 109, 054311 (2024)
We introduce a family of complex networks that interpolates between the Apollonian network and its binary version, recently introduced in [Phys. Rev. E \textbf{107}, 024305 (2023)], via random removal of nodes. The dilution process allows the cluster
Externí odkaz:
http://arxiv.org/abs/2403.18615
The ample cone of a compact Kahler $n$-manifold $M$ is the intersection of its Kahler cone and the real subspace generated by integer (1,1)-classes. Its isotropic boundary is the set of all points $\eta$ on its boundary such that $\int_M \eta^n=0$. W
Externí odkaz:
http://arxiv.org/abs/2402.11697