Zobrazeno 1 - 10
of 219
pro vyhledávání: '"Apers, Peter"'
The standard training method of Conditional Random Fields (CRFs) is very slow for large-scale applications. As an alternative, piecewise training divides the full graph into pieces, trains them independently, and combines the learned weights at test
Externí odkaz:
http://arxiv.org/abs/1008.1566
Publikováno v:
Proceedings of the 24th International Conference of Scientific and Statistical Database Management (SSDBM 2012), 397-405
STARTPAGE=397;ENDPAGE=405;TITLE=Proceedings of the 24th International Conference of Scientific and Statistical Database Management (SSDBM 2012)
Lecture Notes in Computer Science ISBN: 9783642312342
SSDBM
STARTPAGE=397;ENDPAGE=405;TITLE=Proceedings of the 24th International Conference of Scientific and Statistical Database Management (SSDBM 2012)
Lecture Notes in Computer Science ISBN: 9783642312342
SSDBM
Many applications facilitate a data processing chain, i.e. a workflow, to process data. Results of intermediate processing steps may not be persistent since reproducing these results are not costly and these are hardly re-usable. However, in stream d
Publikováno v:
ESANN 2014: 22nd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning : Bruges, Belgium, April 23-24-25, 2014 : proceedings, 479-484
STARTPAGE=479;ENDPAGE=484;TITLE=ESANN 2014
STARTPAGE=479;ENDPAGE=484;TITLE=ESANN 2014
CRFs are discriminative undirected models which are globally normalized. Global normalization preserves CRFs from the label bias problem which most local models suffer from. Recently proposed co-occurrence rate networks (CRNs) are also discriminative
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::81ac6304cc775f60e8b3afe419a6f70a
https://research.utwente.nl/en/publications/62f8f272-5662-4a1b-931c-aae836f17586
https://research.utwente.nl/en/publications/62f8f272-5662-4a1b-931c-aae836f17586
Autor:
Faase, Frans J., Even, Susan J., de By, Rolf A., Apers, Peter M.G., Cluet, Sophie, Hull, Rick
Publikováno v:
Database Programming Languages ISBN: 9783540648239
DBPL
Database Programming Languages: 6th International Workshop, DBPL-6 Estes Park, Colorado, USA, August 18–20, 1997, Proceedings, 336-354
STARTPAGE=336;ENDPAGE=354;TITLE=Database Programming Languages
DBPL
Database Programming Languages: 6th International Workshop, DBPL-6 Estes Park, Colorado, USA, August 18–20, 1997, Proceedings, 336-354
STARTPAGE=336;ENDPAGE=354;TITLE=Database Programming Languages
This paper introduces the specification language CoCaA. The features of COCGA are designed for the specification of both organisational and transactional aspects of cooperative activities, based on the CoACT cooperative transaction model. The novelty
Publikováno v:
Proceedings of the 22nd Belgian-Dutch Conference on Machine Learning, BENELEARN 2013, 105-105
STARTPAGE=105;ENDPAGE=105;TITLE=Proceedings of the 22nd Belgian-Dutch Conference on Machine Learning, BENELEARN 2013
STARTPAGE=105;ENDPAGE=105;TITLE=Proceedings of the 22nd Belgian-Dutch Conference on Machine Learning, BENELEARN 2013
In this paper (Zhu et al., 2013), we present a practi- cally scalable training method for CRFs called Empir- ical Training (EP). We show that the standard train- ing with unregularized log likelihood can have many maximum likelihood estimations (MLEs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::59511f66de3c11f2982513dc9d22ea73
https://research.utwente.nl/en/publications/empirical-training-for-conditional-random-fields(5fd7ca28-9c2d-427e-a9c6-954e811e67ee).html
https://research.utwente.nl/en/publications/empirical-training-for-conditional-random-fields(5fd7ca28-9c2d-427e-a9c6-954e811e67ee).html
Training Conditional Random Fields (CRFs) can be very slow for big data. In this paper, we present a new training method for CRFs called {\em Empirical Training} which is motivated by the concept of co-occurrence rate. We show that the standard train
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::1f85067d69975207a7cfc3a22851e0d8
https://research.utwente.nl/en/publications/closed-form-maximum-likelihood-estimator-of-conditional-random-fields(6eec86d0-4e14-4dd3-9957-ef4e0dba4e1a).html
https://research.utwente.nl/en/publications/closed-form-maximum-likelihood-estimator-of-conditional-random-fields(6eec86d0-4e14-4dd3-9957-ef4e0dba4e1a).html
Publikováno v:
Proceedings of the 23rd Meeting of Computational Linguistics in the Netherlands, CLIN 2013, 96-96
STARTPAGE=96;ENDPAGE=96;TITLE=Proceedings of the 23rd Meeting of Computational Linguistics in the Netherlands, CLIN 2013
STARTPAGE=96;ENDPAGE=96;TITLE=Proceedings of the 23rd Meeting of Computational Linguistics in the Netherlands, CLIN 2013
The standard training method of Conditional Random Fields (CRFs) is very slow for large-scale applications. As an alternative, piecewise training divides the full graph into pieces, trains them independently, and combines the learned weights at test
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::040fa8dec8d99960718de042b9715503
https://research.utwente.nl/en/publications/separate-training-for-conditional-random-fields-using-cooccurrence-rate-factorization(cc11a007-fcf4-480d-9b5a-5c3e2811fb73).html
https://research.utwente.nl/en/publications/separate-training-for-conditional-random-fields-using-cooccurrence-rate-factorization(cc11a007-fcf4-480d-9b5a-5c3e2811fb73).html
Autor:
van Keulen, Maurice, Skowronek, J., Apers, Peter M.G., Balsters, H., Blanken, Henk, de By, R.A., Flokstra, Jan, meersman, R, Mark, L.
Publikováno v:
Database applications semantics: proceedings of the IFIP WG 2.6 Working Conference on Database Applications Semantics (DS-6), Stone Mountain, Ga : May 30-June 2, 1995, 526-546
STARTPAGE=526;ENDPAGE=546;TITLE=Database applications semantics
Proceedings of the IFIP WG 2.6 Working Conference on Database Applications Semantics (DS-6), 526-546
STARTPAGE=526;ENDPAGE=546;TITLE=Proceedings of the IFIP WG 2.6 Working Conference on Database Applications Semantics (DS-6)
Database Applications Semantics ISBN: 9781504129466
DS-6
STARTPAGE=526;ENDPAGE=546;TITLE=Database applications semantics
Proceedings of the IFIP WG 2.6 Working Conference on Database Applications Semantics (DS-6), 526-546
STARTPAGE=526;ENDPAGE=546;TITLE=Proceedings of the IFIP WG 2.6 Working Conference on Database Applications Semantics (DS-6)
Database Applications Semantics ISBN: 9781504129466
DS-6
New application domains in data-processing environments pose new requirements on the methodologies, techniques and tools used to design them. The applications’ semantics should be fully represented at an increasingly high level, and the representat
Autor:
Huq, M.R., Wombacher, Andreas, Apers, Peter M.G., Hameurlain, Abdelkader, Liddle, Stephen W., Schewe, Klaus-Dieter, Zhou, Xiaofang
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642230905
DEXA (2)
22nd International Conference on Database and Expert Systems Applications (DEXA 2011), 118-127
STARTPAGE=118;ENDPAGE=127;TITLE=22nd International Conference on Database and Expert Systems Applications (DEXA 2011)
DEXA (2)
22nd International Conference on Database and Expert Systems Applications (DEXA 2011), 118-127
STARTPAGE=118;ENDPAGE=127;TITLE=22nd International Conference on Database and Expert Systems Applications (DEXA 2011)
Fine-grained data provenance ensures reproducibility of results in decision making, process control and e-science applications. However, maintaining this provenance is challenging in stream data processing because of its massive storage consumption,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::483ca3fa255309b63cb46a00653b1d67
https://doi.org/10.1007/978-3-642-23091-2_11
https://doi.org/10.1007/978-3-642-23091-2_11
Exact inference procedures in Bayesian networks can be expressed using relational algebra; this provides a common ground for optimizations from the AI and database communities. Specifically, the ability to accomodate sparse representations of probabi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=narcis______::23890237aaebd11fcb210e5f8567916f
https://research.utwente.nl/en/publications/inference-optimization-using-relational-algebra(8bb06385-6a6e-4d2d-bfde-aaf482545a35).html
https://research.utwente.nl/en/publications/inference-optimization-using-relational-algebra(8bb06385-6a6e-4d2d-bfde-aaf482545a35).html