Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Apanasov, Boris N."'
Autor:
Apanasov, Boris N.
We discuss questions by Mostow \cite{Mo1}, Bers \cite{B} and Krushkal \cite{Kr1, Kr2} about uniqueness of a conformal or spherical CR structure on the sphere at infinity $\partial H_\mathbb{F}^n$ of symmetric rank one space $H_\mathbb{F}^n$ over divi
Externí odkaz:
http://arxiv.org/abs/2401.04104
Autor:
Apanasov, Boris N.
We use our new type of bounded locally homeomorphic quasiregular mappings in the unit 3-ball to address long standing problems for such mappings. The construction of such mappings comes from our construction of non-trivial compact 4-dimensional cobor
Externí odkaz:
http://arxiv.org/abs/1810.11930
Autor:
Apanasov, Boris N.
Publikováno v:
Lobachevskii J. Math., 38 (2017), 213-228
We discuss how the global geometry and topology of manifolds depend on different group actions of their fundamental groups, and in particular, how properties of a non-trivial compact 4-dimensional cobordism $M$ whose interior has a complete hyperboli
Externí odkaz:
http://arxiv.org/abs/1611.00432
Autor:
Apanasov, Boris N.
Publikováno v:
Ann. Acad. Sci. Fenn. Math. 43 (2018), 579-596
We construct a new type of locally homeomorphic quasiregular mappings in the 3-sphere and discuss their relation to the M.A.Lavrentiev problem, the Zorich map with an essential singularity at infinity, the Fatou's problem and a quasiregular analogue
Externí odkaz:
http://arxiv.org/abs/1510.08951
Autor:
Apanasov, Boris N.1 (AUTHOR) apanasov@ou.edu
Publikováno v:
Journal of Mathematical Sciences. Feb2022, Vol. 260 Issue 5, p601-618. 18p.
Autor:
Apanasov, Boris N.1 (AUTHOR) apanasov@ou.edu
Publikováno v:
Journal of Mathematical Sciences. Nov2019, Vol. 242 Issue 6, p760-771. 12p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Apanasov, Boris N.
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
instname
We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically fin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2e16e621addf46b6f56c82d9851644c9
http://hdl.handle.net/2072/2149
http://hdl.handle.net/2072/2149
Autor:
APANASOV, BORIS N.
Publikováno v:
International Journal of Mathematics; Aug1991, Vol. 2 Issue 4, p361-382, 22p