Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Anvari, Nima"'
Autor:
Anvari, Nima, Hambleton, Ian
Given a 4-manifold with a homologically trivial and locally-linear cyclic group action, we obtain necessary and sufficient conditions for the existence of equivariant bundles. The conditions are derived from the twisted signature formula and are in t
Externí odkaz:
http://arxiv.org/abs/2301.03105
Autor:
Anvari, Nima, Hambleton, Ian
We show that standard cyclic actions on Brieskorn homology 3-spheres with non-empty fixed set do not extend smoothly to any contractible smooth 4-manifold it may bound. The quotient of any such extension would be an acyclic $4$-manifold with boundary
Externí odkaz:
http://arxiv.org/abs/1911.12047
Autor:
Anvari, Nima
In a recent paper, Lin, Ruberman and Saveliev proved a splitting formula expressing the Seiberg-Witten invariant $\lambda_{SW}(X)$ of a smooth $4$-manifold with rational homology of $S^1\times S^3$ in terms of the Fr{\o}yshov invariant $h(X)$ and a L
Externí odkaz:
http://arxiv.org/abs/1901.02570
Autor:
Anvari, Nima
The equivariant rho-invariants studied in this paper are a version of the classical rho-invariants of Atiyah, Patodi, and Singer in the presence of an isometric involution. We compute these rho-invariants for all involutions on the 3-dimensional lens
Externí odkaz:
http://arxiv.org/abs/1609.05025
Autor:
Anvari, Nima
Let $p>5$ be a prime and $X_0$ a simply-connected $4$-manifold with boundary the Poincar\'e homology sphere $\Sigma(2,3,5)$ and even negative-definite intersection form $Q_=\text_8$. We obtain restrictions on extending a free $\bZ/p$-action on $\Sigm
Externí odkaz:
http://hdl.handle.net/11375/13384
Autor:
Anvari, Nima
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times} span.s1 {font: 11.5px Helvetica} This paper consists of mainly two parts. First it is a survey of some results on automorphisms of Riemann surfaces and Fuchsian groups. A theorem of Hurwitz s
Externí odkaz:
http://hdl.handle.net/11375/9044
Autor:
Anvari, Nima, Hambleton, Ian
Publikováno v:
Geom. Topol. 20 (2016) 1127-1155
There are known infinite families of Brieskorn homology 3-spheres which can be realized as boundaries of smooth contractible 4-manifolds. In this paper we show that free periodic actions on these Brieskorn spheres do not extend smoothly over a contra
Externí odkaz:
http://arxiv.org/abs/1412.5877
Autor:
Anvari, Nima
Publikováno v:
Pacific J. Math. 282 (2016) 9-25
Let $X_0$ denote a compact, simply-connected smooth $4$-manifold with boundary the Poincar\'e homology $3$-sphere $\Sigma(2,3,5)$ and with even negative definite intersection form $Q_{X_0}=E_8$. We show that free $\mathbb{Z}/p$ actions on $\Sigma(2,3
Externí odkaz:
http://arxiv.org/abs/1401.1039
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.