Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Anupam Saikia"'
Publikováno v:
Research in Number Theory. 8
Given any positive integer n, it is well known that there always exist triangles with rational sides a, b and c such that the area of the triangle is n. Assuming finiteness of the Shafarevich-Tate group, we first construct a family of infinitely many
Autor:
Jaitra Chattopadhyay, Anupam Saikia
Publikováno v:
The Ramanujan Journal.
For a prime number $p \geq 5$, we explicitly construct a family of imaginary quadratic fields $K$ with ideal class groups $Cl_{K}$ having $p$-rank ${\rm{rk}_{p}(Cl_{K})}$ at least $2$. We also quantitatively prove, under the assumption of the $abc$-c
Autor:
Shamik Das, Anupam Saikia
Publikováno v:
Research in Number Theory. 8
Autor:
Shamik Das, Anupam Saikia
Publikováno v:
Journal of Pure and Applied Algebra. 227:107335
Autor:
Jaitra Chattopadhyay, Anupam Saikia
Publikováno v:
Research in Number Theory. 8
Publikováno v:
Tatra Mountains Mathematical Publications. 77:139-162
In this paper we propose an efficient multivariate encryption scheme based on permutation polynomials over finite fields. We single out a commutative group ℒ(q, m) of permutation polynomials over the finite field F q m. We construct a trapdoor func
Autor:
Anupam Saikia, Shamik Das
Publikováno v:
Bulletin of the Australian Mathematical Society. 103:218-229
The notion of $\theta $ -congruent numbers is a generalisation of congruent numbers where one considers triangles with an angle $\theta $ such that $\cos \theta $ is a rational number. In this paper we discuss a criterion for a natural number to be $
Autor:
Anupam Saikia
Publikováno v:
Acta Arithmetica. 194:179-186
Publikováno v:
Acta Arithmetica. 196:291-302
In 2016, in the work related to Galois representations, Greenberg conjectured the existence of multi-quadratic $p$-rational number fields of degree $2^{t}$ for any odd prime number $p$ and any integer $t \geq 1$. Using the criteria provided by him to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abcca9270459cb668a6b47e304699d42