Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Anupam Golder"'
Publikováno v:
IEEE Sensors Letters. 7:1-4
Publikováno v:
Proceedings of the Great Lakes Symposium on VLSI 2023.
Machine learning (ML) is getting more pervasive. Wide adoption of ML in healthcare, facial recognition, and blockchain involves private and sensitive data. One of the most promising candidates for inference on encrypted data, termed Fully Homomorphic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a627848aa377bdc05497530d131304e9
https://doi.org/10.21203/rs.3.rs-2910088/v1
https://doi.org/10.21203/rs.3.rs-2910088/v1
Autor:
Arijit Raychowdhury, Muya Chang, Shovan Maity, Dong-Hyun Seo, Josef Danial, Sanu Mathew, Harish K. Krishnamurthy, Anupam Golder, Shreyas Sen, Avinash L. Varna, Nirmoy Modak, Debayan Das, Santosh Ghosh, Baibhab Chatterjee
Publikováno v:
IEEE Journal of Solid-State Circuits. 56:136-150
Mathematically secure cryptographic algorithms, when implemented on a physical substrate, leak critical “side-channel” information, leading to power and electromagnetic (EM) analysis attacks. Circuit-level protections involve switched capacitor,
Publikováno v:
Proceedings of the Great Lakes Symposium on VLSI 2022.
Publikováno v:
2022 Opportunity Research Scholars Symposium (ORSS).
Publikováno v:
CICC
This article, for the first time, demonstrates an efficient circuit-level countermeasure to prevent deep-learning based side-channel analysis (DLSCA) attacks on encryption devices. Machine learning (ML) SCA, particularly DLSCA attacks have been shown
Autor:
Arijit Raychowdhury, Josef Danial, Debayan Das, Muya Chang, Harish K. Krishnamurthy, Baibhab Chatterjee, Dong-Hyun Seo, Anupam Golder, Avinash L. Varna, Santosh Ghosh, Sanu Mathew, Shreyas Sen, Nirmoy Modak, Shovan Maity
Publikováno v:
ISSCC
Computationally-secure cryptographic algorithms when implemented on physical platforms leak critical physical signals correlated with the secret key in the form of power consumption and electromagnetic (EM) emanations. This can be exploited by an adv
This work presents a Cross-device Deep-Learning based Electromagnetic (EM-X-DL) side-channel analysis (SCA) on AES-128, in the presence of a significantly lower signal-to-noise ratio (SNR) compared to previous works. Using a novel algorithm to intell
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c34e333d4ba34966c666c81deabe79ed