Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Antti Pihlajamäki"'
Autor:
Sami Malola, Paavo Nieminen, Antti Pihlajamäki, Joonas Hämäläinen, Tommi Kärkkäinen, Hannu Häkkinen
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Atomistic structure prediction of the metal-ligand interface of hybrid nanoparticles remains challenging. Here the authors present an algorithm to predict the structure of the metal-ligand interface of ligand-stabilized gold and silver nanoparticles,
Externí odkaz:
https://doaj.org/article/1545ea91df1048f8ba81ab3314a4a8a4
Autor:
Qiaofeng Yao, Lingmei Liu, Sami Malola, Meng Ge, Hongyi Xu, Zhennan Wu, Tiankai Chen, Yitao Cao, María Francisca Matus, Antti Pihlajamäki, Yu Han, Hannu Häkkinen, Jianping Xie
Publikováno v:
Nature Chemistry. 15:230-239
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjustin
Publikováno v:
The Journal of Physical Chemistry Letters. 13:9928-9933
We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The model is able to predict chem
Autor:
Hannu Häkkinen, Antti Pihlajamäki, Joakim Linja, Joonas Hämäläinen, Tommi Kärkkäinen, Paavo Nieminen, Sami Malola
Publikováno v:
The Journal of Physical Chemistry A. 124:4827-4836
We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiol...
Autor:
Hannu Häkkinen, Sami Malola, Antti Pihlajamäki, Joakim Linja, Tommi Kärkkäinen, Joonas Hämäläinen, Paavo Nieminen
Machine learning (ML) force fields are one of the most common applications of ML in nanoscience. However, commonly these methods are trained on potential energies of atomic systems and force vectors are omitted. Here we present a ML framework, which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce0c308ee07296dad5caace8978f42dc
http://urn.fi/URN:NBN:fi:jyu-202110295450
http://urn.fi/URN:NBN:fi:jyu-202110295450
Autor:
Antti, Pihlajamäki, Joonas, Hämäläinen, Joakim, Linja, Paavo, Nieminen, Sami, Malola, Tommi, Kärkkäinen, Hannu, Häkkinen
Publikováno v:
The journal of physical chemistry. A. 124(23)
We present an implementation of distance-based machine learning (ML) methods to create a realistic atomistic interaction potential to be used in Monte Carlo simulations of thermal dynamics of thiolate (SR) protected gold nanoclusters. The ML potentia
Autor:
Hannu Häkkinen, Paavo Nieminen, Sami Malola, Antti Pihlajamäki, Tommi Kärkkäinen, Joonas Hämäläinen
Publikováno v:
Nature Communications
Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
Hybrid metal nanoparticles, consisting of a nano-crystalline metal core and a protecting shell of organic ligand molecules, have applications in diverse areas such as biolabeling, catalysis, nanomedicine, and solar energy. Despite a rapidly growing d
Autor:
Antti Pihlajamäki
Publikováno v:
Revue internationale de droit pénal. 74:195