Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Antonio Rapagnetta"'
Publikováno v:
Geom. Topol. 23, no. 5 (2019), 2335-2395
To every reduced (projective) curve X with planar singularities one can associate many fine compactified Jacobians, depending on the choice of a polarization on X, which are birational (possibly non-isomorphic) Calabi-Yau projective varieties with lo
Publikováno v:
Compositio Mathematica. 154:984-1013
We realize O’Grady’s six-dimensional example of an irreducible holomorphic symplectic (IHS) manifold as a quotient of an IHS manifold of$\text{K3}^{[3]}$type by a birational involution, thereby computing its Hodge numbers.
Autor:
Antonio Rapagnetta, Giovanni Mongardi
We prove that the bimeromorphic class of a hyperk\"ahler manifold deformation equivalent to O'Grady's six dimensional one is determined by the Hodge structure of its Beauville-Bogomolov lattice by showing that the monodromy group is maximal. As appli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::61df1472aa4026b85f291ca0ecea3b3c
http://arxiv.org/abs/1909.07173
http://arxiv.org/abs/1909.07173
Publikováno v:
Journal de Mathématiques Pures et Appliquées
We determine the Hodge numbers of the hyper-K\"ahler manifold known as O'Grady 10 by studying some related modular Lagrangian fibrations by means of a refinement of the Ng\^o Support Theorem.
Comment: Revised and final version to appear in Jour.
Comment: Revised and final version to appear in Jour.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e77a50d266105979f1776d33fad962a
http://arxiv.org/abs/1905.03217
http://arxiv.org/abs/1905.03217
To every singular reduced projective curve X one can associate many fine compactified Jacobians, depending on the choice of a polarization on X, each of which yields a modular compactification of a disjoint union of the generalized Jacobian of X. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::257b67220894c53768538c8332612516
Autor:
Arvid Perego, Antonio Rapagnetta
Publikováno v:
Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2013, 678, pp.1--34. ⟨10.1515/CRELLE.2011.191⟩
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2013, 678, pp.1--34. ⟨10.1515/CRELLE.2011.191⟩
In this paper we study moduli spaces of sheaves on an abelian or projective K3 surface. If $S$ is a K3, $v=2w$ is a Mukai vector on $S$, where $w$ is primitive and $w^{2}=2$, and $H$ is a $v-$generic polarization on $S$, then the moduli space $M_{v}$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6814f175cef89744c8a84cf90daefc4c
https://hal.archives-ouvertes.fr/hal-01266781
https://hal.archives-ouvertes.fr/hal-01266781
To every singular reduced projective curve X one can associate, following E. Esteves, many fine compactified Jacobians, depending on the choice of a polarization on X, each of which yields a modular compactification of a disjoint union of the general
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7bf9186ac0281bacf5310972be6d3a69
http://arxiv.org/abs/1207.7233
http://arxiv.org/abs/1207.7233
Autor:
Antonio Rapagnetta, Arvid Perego
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2012, 2014 (3), pp.643--680. ⟨10.1093/imrn/rns233⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2012, 2014 (3), pp.643--680. ⟨10.1093/imrn/rns233⟩
In this paper we complete the determination of the index of factoriality of moduli spaces of semistable sheaves on an abelian or projective K3 surface $S$. If $v=2w$ is a Mukai vector, $w$ is primitive, $w^{2}=2$ and $H$ is a generic polarization, le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec9d9d2dcc2cdeec2c28821f1ba22ce9
https://hal.archives-ouvertes.fr/hal-01266784/document
https://hal.archives-ouvertes.fr/hal-01266784/document
Autor:
Antonio Rapagnetta, Pietro Sabatino
We present a complete classification of complex projective surfaces X with nontrivial self-maps (i.e. surjective morphisms f:X→X which are not isomorphisms) of any given degree. Our starting point are results contained in Fujimoto (Publ. Res. Inst.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ba4ead7e7cce27ff28f0b6661bb34fd
http://hdl.handle.net/2108/100768
http://hdl.handle.net/2108/100768
Autor:
Antonio Rapagnetta
We study the global geometry of the ten dimensional O'Grady irreducible symplectic variety. We determine its second Betti number, its Beauville form and its Fujiki constant.
14 pages
14 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::48887e249e2fb3b8f31946f94256c7b9
http://arxiv.org/abs/math/0606409
http://arxiv.org/abs/math/0606409