Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Antonio Fuduli"'
Publikováno v:
EURO Journal on Computational Optimization, Vol 11, Iss , Pp 100070- (2023)
Multiple Instance Learning (MIL) is a kind of weak supervised learning, where each sample is represented by a bag of instances. The main characteristic of such problems resides in the training phase, since the class labels are provided only for each
Externí odkaz:
https://doaj.org/article/2b68c3ba229c4c6c8395ca3d9cf8e88c
Autor:
Matteo Avolio, Antonio Fuduli
Publikováno v:
EURO Journal on Computational Optimization, Vol 10, Iss , Pp 100032- (2022)
We tackle a new single-machine scheduling problem, whose objective is to balance the average weighted completion times of two classes of jobs. Because both the job sets contribute to the same objective function, this problem can be interpreted as a c
Externí odkaz:
https://doaj.org/article/a45759ffc5e2483fb39570865a55e531
Publikováno v:
Operations Research Letters. 51:40-46
Publikováno v:
European journal of operational research (2021).
info:cnr-pdr/source/autori:Annabella Astorino; Matteo Avolio; Antonio Fuduli/titolo:A maximum-margin multisphere approach for binary Multiple Instance Learning/doi:/rivista:European journal of operational research/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Annabella Astorino; Matteo Avolio; Antonio Fuduli/titolo:A maximum-margin multisphere approach for binary Multiple Instance Learning/doi:/rivista:European journal of operational research/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
We propose a heuristic approach for solving binary Multiple Instance Learning (MIL) problems, whose objective is to categorize bags of instances. Considering the case with two classes of instances, on the basis of the standard MIL assumption, a bag i
Publikováno v:
International Database Engineered Applications Symposium Conference.
Publikováno v:
Soft Computing. 26:3361-3368
We present a fast heuristic approach for solving a binary multiple instance learning (MIL) problem, which consists in discriminating between two kinds of item sets: the sets are called bags and the items inside them are called instances. Assuming tha
Autor:
Antonio Fuduli, Matteo Avolio
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems. 32:3566-3577
We face a binary multiple instance learning (MIL) problem, whose objective is to discriminate between two kinds of point sets: positive and negative. In the MIL terminology, such sets are called bags, and the points inside each bag are called instanc
Autor:
Annabella Astorino, Antonio Fuduli
Publikováno v:
Emergence, Complexity and Computation ISBN: 9783030936419
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bfbb9f4c2cd2f02cef09a574c9da0055
https://doi.org/10.1007/978-3-030-93642-6_10
https://doi.org/10.1007/978-3-030-93642-6_10
Publikováno v:
IDEAS
At the end of 2019, the World Health Organization (WHO) referred that the Public Health Commission of Hubei Province, China, reported cases of severe and unknown pneumonia, characterized by fever, malaise, dry cough, dyspnoea and respiratory failure,
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems 30 (2019): 2662–2671. doi:10.1109/TNNLS.2018.2885852
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso./titolo:A Lagrangian Relaxation Approach for Binary Multiple Instance Classification/doi:10.1109%2FTNNLS.2018.2885852/rivista:IEEE Transactions on Neural Networks and Learning Systems/anno:2019/pagina_da:2662/pagina_a:2671/intervallo_pagine:2662–2671/volume:30
LION11, The 2017 Learning and Intelligent Optimization Conference, Nizhny Novgorod, Russia, June 19-21, 2017
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso/congresso_nome:LION11, The 2017 Learning and Intelligent Optimization Conference/congresso_luogo:Nizhny Novgorod, Russia/congresso_data:June 19-21, 2017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso./titolo:A Lagrangian Relaxation Approach for Binary Multiple Instance Classification/doi:10.1109%2FTNNLS.2018.2885852/rivista:IEEE Transactions on Neural Networks and Learning Systems/anno:2019/pagina_da:2662/pagina_a:2671/intervallo_pagine:2662–2671/volume:30
LION11, The 2017 Learning and Intelligent Optimization Conference, Nizhny Novgorod, Russia, June 19-21, 2017
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso/congresso_nome:LION11, The 2017 Learning and Intelligent Optimization Conference/congresso_luogo:Nizhny Novgorod, Russia/congresso_data:June 19-21, 2017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
In the standard classification problems, the objective is to categorize points into different classes. Multiple instance learning (MIL), instead, is aimed at classifying bags of points , each point being an instance . The main peculiarity of a MIL pr