Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Antonio Cano Gómez"'
Autor:
Antonio Cano Gómez, Magnus Steinby
Publikováno v:
Asian-European Journal of Mathematics. :49-79
A new type of syntactic monoid and semigroup of tree languages is introduced. For each n ≥ 1, we define for any tree language T its n-ary syntactic monoid Mn(T) and its n-ary syntactic semigroup Sn(T) as quotients of the monoid or semigroup, respec
Autor:
Antonio Cano Gómez, Nuria Álvarez Sánchez, Paloma Sánchez-Pedreño Guillén, Francisco Gómez García, Vicente Vicente Ortega
Publikováno v:
Revista Española de Patología. 43:191-195
Resumen Antecedentes La exposicion cronica a las radiaciones solares provoca el envejecimiento patologico de la piel (fotoenvejecimiento) y es uno de los principales factores etiologicos implicados en el desarrollo del cancer cutaneo. Metodos Para el
Autor:
Antonio Cano Gómez
Publikováno v:
Grammatical Inference: Theoretical Results and Applications ISBN: 9783642154874
ICGI
ICGI
In this work, we give an algorithm that infers Regular Trace Languages. Trace languages can be seen as regular languages that are closed under a partial commutation relation called the independence relation. This algorithm is similar to the RPNI algo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::30dc2491c726ba8caa121979262d8667
https://doi.org/10.1007/978-3-642-15488-1_3
https://doi.org/10.1007/978-3-642-15488-1_3
Publikováno v:
Proceedings of ICALP 2008
ICALP 2008
ICALP 2008, 2008, Reykjavik, Iceland. pp.209-220
Automata, Languages and Programming ISBN: 9783540705826
ICALP (2)
ICALP 2008
ICALP 2008, 2008, Reykjavik, Iceland. pp.209-220
Automata, Languages and Programming ISBN: 9783540705826
ICALP (2)
International audience; The closure of a regular language under commutation or partial commutation has been extensively studied. In this paper, we present new advances on two problems of this area. Problem 1. When is the closure of a regular language
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8b775e3d07530cb7cc877fae70af38b1
https://hal.archives-ouvertes.fr/hal-00340806
https://hal.archives-ouvertes.fr/hal-00340806
Autor:
Jean-Eric Pin, Antonio Cano Gómez
Publikováno v:
MFCS 2008
MFCS 2008, Aug 2008, Torun, Poland. pp.36-51
Lecture Notes in Computer Science ISBN: 9783540852377
MFCS
MFCS 2008, Aug 2008, Torun, Poland. pp.36-51
Lecture Notes in Computer Science ISBN: 9783540852377
MFCS
In this survey paper, we present known results and open questions on a proper subclass of the class of regular languages. This class, denoted by $\mathcal{W}$, is especially robust: it is closed under union, intersection, product, shuffle, left and r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6840ebd8fea5bb05e3e93010a6af92b
https://hal.archives-ouvertes.fr/hal-00423474
https://hal.archives-ouvertes.fr/hal-00423474
Autor:
Jean-Eric Pin, Antonio Cano Gómez
Publikováno v:
Developments in language theory
Developments in Language Theory ISBN: 9783540404347
Developments in Language Theory
Developments in Language Theory ISBN: 9783540404347
Developments in Language Theory
The notion of sequential and parallel decomposition of a language over a set of languages was introduced by Schnoebelen. A language is decomposable if it belongs to a finite set of languages S such that each member of S admits a sequential and parall
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04a15533263d85ada5fd69061c2466ac
https://hal.archives-ouvertes.fr/hal-00112692
https://hal.archives-ouvertes.fr/hal-00112692
Autor:
Jean-Eric Pin, Antonio Cano Gómez
Publikováno v:
Theoretical Computer Science
Theoretical Computer Science, Elsevier, 2004, 312, pp.433-461
Theoretical Computer Science, Elsevier, 2004, 312, pp.433-461
We show there is a unique maximal positive variety of languages which does not contain the language (ab)*. This variety is the unique maximal positive variety satisfying the two following conditions: it is strictly included in the class of rational l