Zobrazeno 1 - 10
of 134
pro vyhledávání: '"Antonio Algaba"'
Publikováno v:
Symmetry, Vol 13, Iss 8, p 1500 (2021)
In this paper, we analyze the problem of determining orbital hypernormal forms—that is, the simplest analytical expression that can be obtained for a given autonomous system around an isolated equilibrium point through time-reparametrizations and t
Externí odkaz:
https://doaj.org/article/007925731bb647ea9b702dc23b10a3de
Publikováno v:
Mathematics, Vol 9, Iss 1, p 14 (2020)
In this work we use the normal form theory to establish an algorithm to determine if a planar vector field is orbitally reversible. In previous works only algorithms to determine the reversibility and conjugate reversibility have been given. The proc
Externí odkaz:
https://doaj.org/article/90a9f6024ab9436d8c0a0a7342993616
Publikováno v:
Nova Scientia, Vol 9, Iss 19 (2017)
In the commented paper ten nonlinear chaotic systems are presented. Authors state that these systems do not exhibit Shilnikov chaos. Unfortunately, this assertion is not correctly proved because they use an erroneous theorem from the literature.
Externí odkaz:
https://doaj.org/article/fc4f719103804bb8bbe8af8a4371dd28
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
We study the analytic integrability problem through the formal integrability problem and we show its connection, in some cases, with the existence of invariant analytic (sometimes algebraic) curves. From the results obtained, we consider some familie
Externí odkaz:
https://doaj.org/article/e074dd22be7d40d8884aa07076cd7f38
For perturbations of integrable non-Hamiltonian quasi-homogeneous planar vector field whose origin is a non-degenerate singular point, orbital linearization and analytic integrability are equivalent. We show a class of analytically integrable vector
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c9c4880c28508a97cd8062de7b6a5d10
https://repositori.udl.cat/handle/10459.1/463454
https://repositori.udl.cat/handle/10459.1/463454
Publikováno v:
SIAM Journal on Applied Dynamical Systems. 20:403-437
Based on the nonlinear time transformation method, in this paper we propose a recursive algorithm for arbitrary order approximation of heteroclinic orbits. This approach works fine for a wide class...
Publikováno v:
Nonlinear Dynamics. 100:1079-1090
A planar system has been proposed in the paper Rankin et al. (Nonlinear Dyn 66:681–688, 2011) to understand the canard explosion detected in a 6D aircraft ground dynamics model. A specific feature of this minimal 2D system is a critical manifold wi
Publikováno v:
Repositorio Abierto de la UdL
Universitad de Lleida
Arias Montano. Repositorio Institucional de la Universidad de Huelva
instname
Universitad de Lleida
Arias Montano. Repositorio Institucional de la Universidad de Huelva
instname
We generalize the method of construction of an integrating factor for Abel differential equations, developed in Briskin et al. (1998), for any generic monodromic singularity. Here generic means that the vector field has not characteristic directions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7356162dd431b45d8c5e0916ccbf8784
https://doi.org/10.1016/j.na.2021.112597
https://doi.org/10.1016/j.na.2021.112597
Canard explosion is an appealing event occurring in singularly perturbed systems. In this phenomenon, upon variation of a parameter within an exponentially small range, the amplitude of a small limit cycle increases abruptly. In this letter we analyz
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::073fed373417f4fce290828bfe7d3a44
https://doi.org/10.1016/j.aml.2022.108203
https://doi.org/10.1016/j.aml.2022.108203
Publikováno v:
Symmetry, Vol 13, Iss 1500, p 1500 (2021)
Arias Montano. Repositorio Institucional de la Universidad de Huelva
instname
Symmetry
Volume 13
Issue 8
Arias Montano. Repositorio Institucional de la Universidad de Huelva
instname
Symmetry
Volume 13
Issue 8
In this paper, we analyze the problem of determining orbital hypernormal forms—that is, the simplest analytical expression that can be obtained for a given autonomous system around an isolated equilibrium point through time-reparametrizations and t