Zobrazeno 1 - 10
of 154
pro vyhledávání: '"Antonia Vecchio"'
Autor:
Cirolla, Andrea
Publikováno v:
Rivista di Storia della Filosofia (1984-), 2013 Jan 01. 68(4), 835-836.
Externí odkaz:
https://www.jstor.org/stable/24869654
Publikováno v:
Mathematical Biosciences and Engineering, Vol 20, Iss 7, Pp 11656-11675 (2023)
In this paper we consider a non-standard discretization to a Volterra integro-differential system which includes a number of age-of-infection models in the literature. The aim is to provide a general framework to analyze the proposed scheme for the n
Externí odkaz:
https://doaj.org/article/b4747fc8a1114a89a209634f6633cad2
Publikováno v:
Axioms, Vol 11, Iss 2, p 69 (2022)
In this paper, we study a dynamically consistent numerical method for the approximation of a nonlinear integro-differential equation modeling an epidemic with age of infection. The discrete scheme is based on direct quadrature methods with Gregory co
Externí odkaz:
https://doaj.org/article/2ad29fbbb3c24ecea28ab2d0fe0bb4f0
Publikováno v:
International Journal of Dynamics and Control. 11:574-584
We present a novel approach to the system inversion problem for linear, scalar (i.e. single-input, single-output, or SISO) plants. The problem is formulated as a constrained optimization program, whose objective function is the transition time betwee
Autor:
Eleonora Messina, Antonia Vecchio
Publikováno v:
Axioms, Vol 10, Iss 1, p 23 (2021)
In this paper, the asymptotic behaviour of the numerical solution to the Volterra integral equations is studied. In particular, a technique based on an appropriate splitting of the kernel is introduced, which allows one to obtain vanishing asymptotic
Externí odkaz:
https://doaj.org/article/8b051b53519445cea053edad9a6a61d9
Publikováno v:
Mathematics, Vol 8, Iss 7, p 1133 (2020)
This paper describes the effect of perturbation of the kernel on the solutions of linear Volterra integral equations on time scales and proposes a new perspective for the stability analysis of numerical methods.
Externí odkaz:
https://doaj.org/article/e187f532c32b4318ae5b0b17701bb183
Publikováno v:
Journal of Computational and Applied Mathematics. 425:115068
Publikováno v:
Applied numerical mathematics 155 (2020): 29–37. doi:10.1016/j.apnum.2019.05.019
info:cnr-pdr/source/autori:Messina E.; Chioccarelli E.; Baltzopoulos G.; Vecchio A./titolo:Numerical analysis of the dynamics of rigid blocks subjected to support excitation/doi:10.1016%2Fj.apnum.2019.05.019/rivista:Applied numerical mathematics/anno:2020/pagina_da:29/pagina_a:37/intervallo_pagine:29–37/volume:155
info:cnr-pdr/source/autori:Messina E.; Chioccarelli E.; Baltzopoulos G.; Vecchio A./titolo:Numerical analysis of the dynamics of rigid blocks subjected to support excitation/doi:10.1016%2Fj.apnum.2019.05.019/rivista:Applied numerical mathematics/anno:2020/pagina_da:29/pagina_a:37/intervallo_pagine:29–37/volume:155
The dynamic behaviour of rigid blocks subjected to support excitation is represented by discontinuous differential equations with state jumps. In the numerical simulation of these systems, the jump times corresponding to the numerical trajectory do n
Autor:
E. Messina, Antonia Vecchio
Publikováno v:
Modélisation mathématique et analyse numérique (Impr.) 54 (2020): 129–143. doi:10.1051/m2an/2019078
info:cnr-pdr/source/autori:Messina, Eleonora; Vecchio, Antonia/titolo:Long-time behaviour of the approximate solution to quasi-convolution Volterra equations/doi:10.1051%2Fm2an%2F2019078/rivista:Modélisation mathématique et analyse numérique (Impr.)/anno:2020/pagina_da:129/pagina_a:143/intervallo_pagine:129–143/volume:54
info:cnr-pdr/source/autori:Messina, Eleonora; Vecchio, Antonia/titolo:Long-time behaviour of the approximate solution to quasi-convolution Volterra equations/doi:10.1051%2Fm2an%2F2019078/rivista:Modélisation mathématique et analyse numérique (Impr.)/anno:2020/pagina_da:129/pagina_a:143/intervallo_pagine:129–143/volume:54
The integral representation of some biological phenomena consists in Volterra equations whose kernels involve a convolution term plus a non convolution one. Some significative applications arise in linearised models of cell migration and collective m