Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Antonazzo, Filippo"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Antonazzo, Filippo
Publikováno v:
Data Structures and Algorithms [cs.DS]. Université de Lille, 2022. English. ⟨NNT : 2022ULILB015⟩
Statistics [math.ST]. Université de Lille, 2022. English. ⟨NNT : ⟩
Statistics [math.ST]. Université de Lille, 2022. English. ⟨NNT : ⟩
Clustering reveals all its interest when the data set size considerably increases, since there is the opportunity to discover tiny but possibly high value clusters, which can not be detected with moderate sample sizes. However, the clustering of such
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::3fe75bf7693d2ff1066ed2d94bec5b7a
https://theses.hal.science/tel-03846222
https://theses.hal.science/tel-03846222
Publikováno v:
MBC2-Models and Learning for Clustering and Classification
MBC2-Models and Learning for Clustering and Classification, Sep 2020, Catania, Italy
Book of Short Papers of the 5th international workshop on Models and Learning for Clustering and Classification MBC2 2020, Catania, Italy
Book of Short Papers of the 5th international workshop on Models and Learning for Clustering and Classification MBC2 2020, Catania, Italy, pp.11-16, 2021
MBC2-Models and Learning for Clustering and Classification, Sep 2020, Catania, Italy
Book of Short Papers of the 5th international workshop on Models and Learning for Clustering and Classification MBC2 2020, Catania, Italy
Book of Short Papers of the 5th international workshop on Models and Learning for Clustering and Classification MBC2 2020, Catania, Italy, pp.11-16, 2021
International audience; Clustering is impacted by the regular increase of sample sizes which provides opportunity to reveal information previously out of scope. However, the volume of data leads to some issues related to the need of many computationa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1b1403388e46dbbdcd758a094d53e005
https://hal.archives-ouvertes.fr/hal-03097284/document
https://hal.archives-ouvertes.fr/hal-03097284/document
Publikováno v:
JDS 2020-52ème Journées de Statistiques de la Société Française de Statistique
JDS 2020-52ème Journées de Statistiques de la Société Française de Statistique, May 2020, Nice, France
JDS2020
JDS2020, 2021, Nice, France
JDS 2020-52ème Journées de Statistiques de la Société Française de Statistique, May 2020, Nice, France
JDS2020
JDS2020, 2021, Nice, France
Due to the COVID-19 pandemic, the 52nd Journées de Statistique are postponed. They will take place from June 7th to 11th 2021 in Nice on the Valrose Campus of the Université Côte d'Azur.; International audience; Popularity of unsupervised learning
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b21e0f1fa5b4f4a6366a1b8a75920ecc
https://hal.science/hal-03082437v2/document
https://hal.science/hal-03082437v2/document
Publikováno v:
SFdS 2021-52èmes Journées de Statistiques de la Société Française de Statistique
SFdS 2021-52èmes Journées de Statistiques de la Société Française de Statistique, May 2020, Nice, France
SFdS 2021-52èmes Journées de Statistiques de la Société Française de Statistique, May 2020, Nice, France
Due to the COVID-19 pandemic, the 52nd Journées de Statistique are postponed. They will take place from June 7th to 11th 2021 in Nice on the Valrose Campus of the Université Côte d'Azur.; National audience; Popularity of unsupervised learning is m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a09a67886e05d12da319bd11bf97810d
https://hal.inria.fr/hal-03082437/document
https://hal.inria.fr/hal-03082437/document
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bianchi-Marzoli, Stefania, Fenu, Silvia, Melzi, Lisa, Benzoni, Chiara, Antonazzo, Filippo, Tomas Roldan, Eugenia, Farina, Laura, Tremolada, Gemma, Mauro, Elena, Pensato, Viviana, Gellera, Cinzia, Pareyson, Davide, Salsano, Ettore
Publikováno v:
Neurological Sciences; 2021, Vol. 42 Issue 1, p235-241, 7p, 4 Charts
Publikováno v:
Working Group-Model-based Clustering
Working Group-Model-based Clustering, Oct 2021, Athens, Greece
Working Group-Model-based Clustering, Oct 2021, Athens, Greece
Clustering conceptually reveals all its interest when the dataset size considerably increases since there is the opportunity to discover tiny but possibly high value clusters which were out of reach with more modest sample sizes. However, clustering
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f6e4c6b3ecc344c2a98d5a500d5d77ba
https://hal.science/hal-03505673/document
https://hal.science/hal-03505673/document