Zobrazeno 1 - 10
of 111
pro vyhledávání: '"Anton Galajinsky"'
Autor:
Anton Galajinsky
Publikováno v:
Journal of High Energy Physics, Vol 2024, Iss 5, Pp 1-18 (2024)
Abstract Integrability of $$\mathcal{N}$$ = 1 supersymmetric Ruijsenaars-Schneider three-body models based upon the potentials $$W\left(x\right)=\frac{2}{x}$$ , $$W\left(x\right)=\frac{2}{{\text{sin}}x}$$ , and $$W\left(x\right)=\frac{2}{{\text{sinh}
Externí odkaz:
https://doaj.org/article/9b4cf06d9e3e40e3ab43e9c67aeac8e8
Autor:
Anton Galajinsky
Publikováno v:
Journal of High Energy Physics, Vol 2023, Iss 11, Pp 1-16 (2023)
Abstract An N $$ \mathcal{N} $$ = 1 supersymmetric extension of the Ruijsenaars-Schneider three-body model is constructed and its integrability is established. In particular, three functionally independent Grassmann-odd constants of the motion are gi
Externí odkaz:
https://doaj.org/article/b495f34f47b84fcebea17eadbf8650bb
Autor:
Anton Galajinsky
Publikováno v:
Nuclear Physics B, Vol 999, Iss , Pp 116450- (2024)
Equations of fluid mechanics with N=1 Schrödinger supersymmetry are formulated within the method of nonlinear realizations of Lie groups.
Externí odkaz:
https://doaj.org/article/110c257b5ded4cae93ee58e83b60e96a
Autor:
Anton Galajinsky
Publikováno v:
Physics Letters B, Vol 843, Iss , Pp 138042- (2023)
The Schwarzian derivative has recently received renewed attention in connection with the study of the Sachdev–Ye–Kitaev model. In mathematics literature, various higher order generalizations of the Schwarzian derivative are known due to Aharonov,
Externí odkaz:
https://doaj.org/article/86606e6154ec43c0b7f7318130e68204
Autor:
Anton Galajinsky
Publikováno v:
Nuclear Physics B, Vol 984, Iss , Pp 115965- (2022)
Equations of fluid dynamics are formulated, which hold invariant under the action of the ℓ–conformal Galilei group. They include the conventional continuity equation, a higher order material derivative analogue of the Euler equation, and a suitab
Externí odkaz:
https://doaj.org/article/9719afd965204fdcb5622d8ba6ad2167
Autor:
Anton Galajinsky, Ivan Masterov
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 8, Pp 1-16 (2021)
Abstract The issue of constructing N $$ \mathcal{N} $$ = 1, 2, 3 supersymmetric extensions of the ℓ-conformal Galilei algebra is reconsidered following the approach in [27]. Drawing a parallel between acceleration generators entering the superalgeb
Externí odkaz:
https://doaj.org/article/b26da140265d4b289905abdc80fcb7b2
Generalized spinning particles on $${\mathcal {S}}^2$$ S 2 in accord with the Bianchi classification
Autor:
Anton Galajinsky
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 81, Iss 3, Pp 1-8 (2021)
Abstract Motivated by recent studies of superconformal mechanics extended by spin degrees of freedom, we construct minimally superintegrable models of generalized spinning particles on $${\mathcal {S}}^2$$ S 2 , the internal degrees of freedom of whi
Externí odkaz:
https://doaj.org/article/489c0b9bfbe14b24918bb2cc667c7279
Autor:
Anton Galajinsky
Publikováno v:
Physics Letters B, Vol 829, Iss , Pp 137119- (2022)
A three–vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three–vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is sh
Externí odkaz:
https://doaj.org/article/114dac16c5914288b70e0a6b19a2cce8
Autor:
Anton Galajinsky
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 6, Pp 1-14 (2020)
Abstract The N $$ \mathcal{N} $$ = 1 and N $$ \mathcal{N} $$ = 2 super-Schwarzian derivatives were originally introduced by physicists when computing a finite superconformal transformation of the super stress-energy tensor underlying a superconformal
Externí odkaz:
https://doaj.org/article/cd42a93bb61140879aafbbea8286cd35
Autor:
Anton Galajinsky
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 3, Pp 1-12 (2020)
Abstract Integrable spinning extension of a free particle on S $$ \mathcal{S} $$ 2 is constructed in which spin degrees of freedom are represented by a 3-vector obeying the Bianchi type-V algebra. Generalizations involving a scalar potential giving r
Externí odkaz:
https://doaj.org/article/1d14ec79c7ed455ca62702779ff328c7