Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Anton Bouter"'
Autor:
Danique L.J. Barten, Bradley R. Pieters, Anton Bouter, Marjolein C. van der Meer, Stef C. Maree, Karel A. Hinnen, Henrike Westerveld, Peter A.N. Bosman, Tanja Alderliesten, Niek van Wieringen, Arjan Bel
Publikováno v:
Brachytherapy. Elsevier Inc.
Brachytherapy, 22(2), 279-289. Elsevier Inc.
Brachytherapy, 22(2), 279-289. Elsevier Inc.
Purpose: This prospective study evaluates our first clinical experiences with the novel ``BRachytherapy via artificial Intelligent GOMEA-Heuristic based Treatment planning'' (BRIGHT) applied to high-dose-rate prostate brachytherapy. MethodS AND MATER
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2d51e6f3cbb7e35b6193343de6fd5d5
https://pure.amc.nl/en/publications/towards-artificial-intelligencebased-automated-treatment-planning-in-clinical-practice(63803e0f-b0f8-4ccf-a375-00b744c5820e).html
https://pure.amc.nl/en/publications/towards-artificial-intelligencebased-automated-treatment-planning-in-clinical-practice(63803e0f-b0f8-4ccf-a375-00b744c5820e).html
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031147203
Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find solutions well spread over all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a224a2ef7c6cd5c24b342d94d9646b33
https://ir.cwi.nl/pub/32127
https://ir.cwi.nl/pub/32127
Autor:
Peter A. N. Bosman, Bradley R. Pieters, N. Van Wieringen, G.H. Westerveld, M.C. van der Meer, K.A. Hinnen, Anton Bouter, Tanja Alderliesten, Arjan Bel, D. Barten, Yury Niatsetski, S. C. Maree
Publikováno v:
Radiotherapy and Oncology. 161:S653-S655
Autor:
Bradley R. Pieters, Peter A. N. Bosman, Anton Bouter, Yury Niatsetski, Tanja Alderliesten, S. Buus
Publikováno v:
Radiotherapy and Oncology. 158:S195-S197
Publikováno v:
CEC
The Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) has previously been successfully used to achieve highly scalable optimization of various real-world problems in a gray-box optimization setting. Deformable Image Registration
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::78ef23a958e3a82b9b9fcd3e2fae9a84
https://doi.org/10.1109/cec45853.2021.9504840
https://doi.org/10.1109/cec45853.2021.9504840
Publikováno v:
Evolutionary Computation, 29(1), 129-155. MIT Press Journals
Evolutionary Computation, 29(1), 129-155
Evolutionary Computation, 29(1), 129-155. MIT PRESS
Evolutionary Computation, 29(1), 129-155
Evolutionary Computation, 29(1), 129-155. MIT PRESS
It is known that to achieve efficient scalability of an Evolutionary Algorithm (EA), dependencies (also known as linkage) must be properly taken into account during variation. In a Gray-Box Optimization (GBO) setting, exploiting prior knowledge regar
Autor:
Tanja Alderliesten, Bradley R. Pieters, Anton Bouter, Peter A. N. Bosman, Arjan Bel, Yury Niatsetski
Publikováno v:
Medical physics, 46(9), 3776-3787. AAPM-American Association of Physicists in Medicine
Medical Physics, 46(9), 3776-3787. AAPM-American Association of Physicists in Medicine
Medical Physics, 46(9), 3776-3787
Bouter, A, Alderliesten, T, Pieters, B R, Bel, A, Niatsetski, Y & Bosman, P A N 2019, ' GPU-accelerated bi-objective treatment planning for prostate high-dose-rate brachytherapy ', Medical Physics, vol. 46, no. 9, pp. 3776-3787 . https://doi.org/10.1002/mp.13681
Medical Physics, 46(9), 3776-3787. AAPM-American Association of Physicists in Medicine
Medical Physics, 46(9), 3776-3787
Bouter, A, Alderliesten, T, Pieters, B R, Bel, A, Niatsetski, Y & Bosman, P A N 2019, ' GPU-accelerated bi-objective treatment planning for prostate high-dose-rate brachytherapy ', Medical Physics, vol. 46, no. 9, pp. 3776-3787 . https://doi.org/10.1002/mp.13681
Purpose: The purpose of this study is to improve upon a recently introduced bi-objective treatment planning method for prostate high-dose-rate (HDR) brachytherapy (BT), both in terms of resulting plan quality and runtime requirements, to the extent t
Publikováno v:
IEEE Transactions on Evolutionary Computation, 25(2), 358-370
IEEE Transactions on Evolutionary Computation, 25(2)
IEEE Transactions on Evolutionary Computation, 25(2)
The recently introduced real-valued gene-pool optimal mixing evolutionary algorthm (RV-GOMEA) has been shown to be among the state of the art for solving gray-box optimization problems where partial evaluations can be leveraged. A core strength is it
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eaca2b8f2696ef9ce361ca5cfa3943a7
https://ir.cwi.nl/pub/30301
https://ir.cwi.nl/pub/30301
Publikováno v:
GECCO
GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 603-611
STARTPAGE=603;ENDPAGE=611;TITLE=GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020
GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 603-611
STARTPAGE=603;ENDPAGE=611;TITLE=GECCO 2020-Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
GECCO 2020
Often, real-world problems are of the gray-box type. It has been shown that the Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA) is in principle capable of exploiting such a Gray-Box Optimization (GBO) setting using linkage mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91a65de9674a66bd087f374e1703d006
https://doi.org/10.1145/3377930.3390225
https://doi.org/10.1145/3377930.3390225
Publikováno v:
GECCO 2018-Proceedings of the 2018 Genetic and Evolutionary Computation Conference, 1199-1206
STARTPAGE=1199;ENDPAGE=1206;TITLE=GECCO 2018-Proceedings of the 2018 Genetic and Evolutionary Computation Conference
GECCO
STARTPAGE=1199;ENDPAGE=1206;TITLE=GECCO 2018-Proceedings of the 2018 Genetic and Evolutionary Computation Conference
GECCO
The importance and potential of Gray-Box Optimization (GBO) with evolutionary algorithms is becoming increasingly clear lately, both for benchmark and real-world problems. We consider the GBO setting where partial evaluations are possible, meaning th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b86bb7f032c50e5666b8a17c0fd377ae
https://ir.cwi.nl/pub/27890
https://ir.cwi.nl/pub/27890