Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Antoine Fagette"'
Autor:
Yassine Habib, Panagiotis Papadakis, Cédric Le Barz, Antoine Fagette, Tiago Gonçalves, Cédric Buche
Publikováno v:
2023 9th International Conference on Automation, Robotics and Applications (ICARA).
Publikováno v:
2022 IEEE Symposium Series on Computational Intelligence (SSCI).
Publikováno v:
FUSION
This paper presents a study on electromagnetic emitter localization using time difference of arrival (TDOA) and frequency-difference-of-arrival (FDOA) measurements acquired by moving sensors in the presence of communication constraints. The problem i
Publikováno v:
ITSC
Besides outliers generated from the data collection stage, anomalies in traffic data can also be valid data characterizing unusual traffic activities. Detecting these anomalies in spatiotemporal traffic activities can provide practical insights for t
Publikováno v:
2017 Winter Simulation Conference (WSC).
Publikováno v:
OCEANS 2017 - Aberdeen.
In this article we are addressing the problem of automatic detection and classification of underwater mines on images generated by a Synthetic Aperture Sonar (SAS). To tackle this problem, we are investigating the use of Machine Learning techniques,
Publikováno v:
2016 IEEE Region 10 Conference (TENCON).
Due to the non-predictive nature of disasters, there is little first-hand data available which in turn is a serious constraint to conduct research on the implication of disasters on urban population. Computational sociology aims at by-passing this is
Autor:
Sidney Tio, Antoine Fagette, Stephen Kheh Chew Chai, Mohd. Faisal Bin Zainal Abiden, Shawn Thian, Serge Landry, Hui Min Ng
Publikováno v:
Complex Systems Design & Management Asia ISBN: 9783319296425
CSDM Asia
CSDM Asia
In this paper we discuss how findings from social sciences research can be injected into a complex urban environment simulator in order to increase the level of realism of the simulated behaviors with respect to the local context. Our team, composed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::02ecc212adfb665629f90b4f4681f2c2
https://doi.org/10.1007/978-3-319-29643-2_18
https://doi.org/10.1007/978-3-319-29643-2_18
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783319255293
ICPRAM (Selected Papers)
ICPRAM (Selected Papers)
This paper deal with the flow tracking topic applied to dense crowds of pedestrians. Using the estimated density, a cloud of particles is spread on the image and propagated according to the optical flow. Each particles embedding physical properties s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5e2ff60860266bab97da8f909b2b7242
https://doi.org/10.1007/978-3-319-25530-9_16
https://doi.org/10.1007/978-3-319-25530-9_16
Publikováno v:
Pattern Recognition Letters
Pattern Recognition Letters, Elsevier, 2013, pp.1-27
Pattern Recognition Letters, 2013, pp.1-27
Pattern Recognition Letters, Elsevier, 2013, pp.1-27
Pattern Recognition Letters, 2013, pp.1-27
We propose a fully unsupervised method for the detection of dense crowds in images.We build multiscale texture-based feature vectors over the image.We use the diffusion maps algorithm to perform the clustering of our data.We propose the use of a quad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6aadc5afeeb352313d454077dd99d38
https://hal.archives-ouvertes.fr/hal-00904210
https://hal.archives-ouvertes.fr/hal-00904210