Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Anthony Zullo"'
Publikováno v:
BMC Public Health, Vol 21, Iss 1, Pp 1-10 (2021)
Abstract Background In France, like in most developed countries, the number of road accident fatalities is estimated from police data. These estimates are considered to be good-quality, unlike estimates of road injuries admitted to hospital, and espe
Externí odkaz:
https://doaj.org/article/75ae5b4be59f46b0a9400ba5da72713a
Publikováno v:
BMC Public Health, Vol 21, Iss 1, Pp 1-10 (2021)
BMC Public Health
BMC Public Health, BioMed Central, 2021, 21 ((1)), p469. ⟨10.1186/s12889-021-10437-0⟩
BMC Public Health
BMC Public Health, BioMed Central, 2021, 21 ((1)), p469. ⟨10.1186/s12889-021-10437-0⟩
Background In France, like in most developed countries, the number of road accident fatalities is estimated from police data. These estimates are considered to be good-quality, unlike estimates of road injuries admitted to hospital, and especially se
Nonparametric regression on contaminated functional predictor with application to hyperspectral data
Publikováno v:
Econometrics and Statistics
Econometrics and Statistics, Elsevier, 2019, 9, pp.95-107. ⟨10.1016/j.ecosta.2017.02.004⟩
Econometrics and Statistics, 2019, 9, pp.95-107. ⟨10.1016/j.ecosta.2017.02.004⟩
Econometrics and Statistics, Elsevier, 2019, 9, pp.95-107. ⟨10.1016/j.ecosta.2017.02.004⟩
Econometrics and Statistics, 2019, 9, pp.95-107. ⟨10.1016/j.ecosta.2017.02.004⟩
Regressing nonparametrically a scalar response on a contaminated random curve observed at some measurement grid may be a hard task. To address this common statistical situation, a kernel presmoothing step is achieved on the noisy functional predictor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1f8a7b4765eb993f0a49660a883fabe
https://hal.archives-ouvertes.fr/hal-01605940
https://hal.archives-ouvertes.fr/hal-01605940
Publikováno v:
Journal of Applied Statistics
Journal of Applied Statistics, Taylor & Francis (Routledge), 2018, 45 (2), pp.2219-2237. ⟨10.1080/02664763.2017.1414162⟩
Journal of Applied Statistics, 2018, 45 (2), pp.2219-2237. ⟨10.1080/02664763.2017.1414162⟩
Journal of Applied Statistics, Taylor & Francis (Routledge), 2018, 45 (2), pp.2219-2237. ⟨10.1080/02664763.2017.1414162⟩
Journal of Applied Statistics, 2018, 45 (2), pp.2219-2237. ⟨10.1080/02664763.2017.1414162⟩
The aim of this article is to assess and compare several statistical methods for hyperspectral image supervised classification only using the spectral dimension. Since hyperspectral profiles may be viewed either as a random vector or a random curve,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::91423eb83cc92a2a99161be053062775
https://hal.archives-ouvertes.fr/hal-01948618
https://hal.archives-ouvertes.fr/hal-01948618
Publikováno v:
6. Workshop on Hyperspectral image and signal processing: evolution in remote sensing
6. Workshop on Hyperspectral image and signal processing: evolution in remote sensing, Jun 2014, Lausanne, Switzerland. 4 p
WHISPERS
6. Workshop on Hyperspectral image and signal processing: evolution in remote sensing, Jun 2014, Lausanne, Switzerland. 4 p
WHISPERS
International audience; A nonlinear parsimonious feature selection algorithm is presented in this paper. It is based on a Gaussian mixture model (GMM). GMM are used for classifying hyperspectral images. The algorithm selects iteratively spectral feat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bbd5be6de32f36509d3366c510b3f3eb
https://hal.inrae.fr/hal-02797359
https://hal.inrae.fr/hal-02797359
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2015, 8 (6), pp.2824-2831. ⟨10.1109/jstars.2015.2441771⟩
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, IEEE, 2015, 8 (6), pp.2824-2831. ⟨10.1109/jstars.2015.2441771⟩
International audience; A fast forward feature selection algorithm is presented in this paper. It is based on a Gaussian mixture model (GMM) classifier. GMM are used for classifying hyperspectral images. The algorithm selects iteratively spectral fea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97e64ead6c5b79e3379bcaee737bbf03
https://hal.inrae.fr/hal-02638712
https://hal.inrae.fr/hal-02638712
Publikováno v:
IEEE International Geoscience and Remote Sensing Symposium Proceedings
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2014, Quebec, Canada. pp.4, ⟨10.1109/IGARSS.2014.6947217⟩
IGARSS
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2014, Quebec, Canada. pp.4, ⟨10.1109/IGARSS.2014.6947217⟩
IGARSS
International audience; The objective of this article is to assess the relevance of a statistical method for hyperspectral image classification. We focus on the implementation of a functional method whose main objective is to consider each hyperspect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::142997ac49f5a0aab96d59d9efc9a490
https://hal.inrae.fr/hal-02740723
https://hal.inrae.fr/hal-02740723