Zobrazeno 1 - 10
of 279
pro vyhledávání: '"Ansari, Rashid"'
Autor:
Atici, Salih, Pan, Hongyi, Elnagar, Mohammed H., Allareddy, Veerasathpurush, Suhaym, Omar, Ansari, Rashid, Cetin, Ahmet Enis
We present a novel deep learning method for fully automated detection and classification of the Cervical Vertebrae Maturation (CVM) stages. The deep convolutional neural network consists of three parallel networks (TriPodNet) independently trained wi
Externí odkaz:
http://arxiv.org/abs/2211.08505
Autor:
Deore, Rucha, Ansari, Rashid, Awathale, Sanjay N., Shelke, Madhav, Badwaik, Hemant R., Goyal, Sameer N., Nakhate, Kartik T.
Publikováno v:
In European Journal of Pharmacology 15 August 2024 977
Autor:
Mokatren, Lubna Shibly, Ansari, Rashid, Cetin, Ahmet Enis, Leow, Alex D, Klumpp, Heide, Ajilore, Olusola, Vural, Fatos Yarman
Electroencephalography (EEG) serves as an effective diagnostic tool for mental disorders and neurological abnormalities. Enhanced analysis and classification of EEG signals can help improve detection performance. A new approach is examined here for e
Externí odkaz:
http://arxiv.org/abs/1905.09472
In this study, we present a new approach to design a Least Mean Squares (LMS) predictor. This approach exploits the concept of deep neural networks and their supremacy in terms of performance and accuracy. The new LMS predictor is implemented as a de
Externí odkaz:
http://arxiv.org/abs/1905.04596
Autor:
Mokatren, Lubna Shibly, Ansari, Rashid, Cetin, Ahmet Enis, Leow, Alex D., Ajilore, Olusola, Klumpp, Heide, Vural, Fatos T. Yarman
The problem of detecting the presence of Social Anxiety Disorder (SAD) using Electroencephalography (EEG) for classification has seen limited study and is addressed with a new approach that seeks to exploit the knowledge of EEG sensor spatial configu
Externí odkaz:
http://arxiv.org/abs/1812.02865
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Facial pain expression is an important modality for assessing pain, especially when the patient's verbal ability to communicate is impaired. The facial muscle-based action units (AUs), which are defined by the Facial Action Coding System (FACS), have
Externí odkaz:
http://arxiv.org/abs/1811.07988
Utilizing device-to-device (D2D) connections among mobile devices is promising to meet the increasing throughput demand over cellular links. In particular, when mobile devices are in close proximity of each other and are interested in the same conten
Externí odkaz:
http://arxiv.org/abs/1712.03290
Patient pain can be detected highly reliably from facial expressions using a set of facial muscle-based action units (AUs) defined by the Facial Action Coding System (FACS). A key characteristic of facial expression of pain is the simultaneous occurr
Externí odkaz:
http://arxiv.org/abs/1712.01496
Autor:
Lodhi, Muhammad K, Ansari, Rashid, Yao, Yingwei, Keenan, Gail M, Wilkie, Diana, Khokhar, Ashfaq A
Readmission rates in the hospitals are increasingly being used as a benchmark to determine the quality of healthcare delivery to hospitalized patients. Around three-fourths of all hospital re-admissions can be avoided, saving billions of dollars. Man
Externí odkaz:
http://arxiv.org/abs/1702.04036