Zobrazeno 1 - 10
of 678
pro vyhledávání: '"Anoop T"'
Along with the partition of a planar bounded domain $\Omega$ by the nodal set of a fixed eigenfunction of the Laplace operator in $\Omega$, one can consider another natural partition of $\Omega$ by, roughly speaking, gradient flow lines of a special
Externí odkaz:
http://arxiv.org/abs/2410.07811
We establish the weighted fractional Orlicz-Hardy inequalities for various Orlicz functions. Further, we identify the critical cases for each Orlicz function and prove the weighted fractional Orlicz-Hardy inequalities with logarithmic correction. Mor
Externí odkaz:
http://arxiv.org/abs/2401.06434
Let $\tau_k(\Omega)$ be the $k$-th eigenvalue of the Laplace operator in a bounded domain $\Omega$ of the form $\Omega_{\text{out}} \setminus \overline{B_{\alpha}}$ under the Neumann boundary condition on $\partial \Omega_{\text{out}}$ and the Robin
Externí odkaz:
http://arxiv.org/abs/2309.15558
Let $\Omega$ be an open subset of $\mathbb{R}^N$ with $N\geq 2.$ We identify various classes of Young functions $\Phi$ and $\Psi$, and function spaces for a weight function $g$ so that the following weighted Orlicz-Sobolev inequality holds: \begin{eq
Externí odkaz:
http://arxiv.org/abs/2305.15289
Autor:
Balachandran, Anoop T.1 (AUTHOR) athozhuthungalba@qc.cuny.edu, Orange, Samuel T.2 (AUTHOR), Wang, Yipeng3 (AUTHOR), Lustin, Renee1 (AUTHOR), Vega, Andy1 (AUTHOR), Quiles, Norberto1 (AUTHOR)
Publikováno v:
PLoS ONE. 8/12/2024, Vol. 19 Issue 8, p1-13. 13p.
Autor:
Anoop, T. V., Ghosh, Mrityunjoy
Publikováno v:
Topol. Methods Nonlinear Anal., 2024
Let $\Omega$ be a multiply-connected domain in $\mathbb{R}^n$ ($n\geq 2$) of the form $\Omega=\Omega_{\text{out}}\setminus \bar{\Omega_{\text{in}}}.$ Set $\Omega_D$ to be either $\Omega_{\text{out}}$ or $\Omega_{\text{in}}$. For $p\in (1,\infty),$ an
Externí odkaz:
http://arxiv.org/abs/2205.12717
Autor:
Anoop, T. V., Das, Ujjal
For $ p \in (1,N)$ and a domain $\Omega$ in $\mathbb{R}^N$, we study the following quasi-linear problem involving the critical growth: \begin{eqnarray*} -\Delta_p u - \mu g|u|^{p-2}u = |u|^{p^{*}-2}u \ \mbox{ in } \mathcal{D}_p(\Omega), \end{eqnarray
Externí odkaz:
http://arxiv.org/abs/2205.08526
Autor:
Kaur Sardarni, Urvinder, Ambikan, Anoop T, Acharya, Arpan, Johnson, Samuel D, Avedissian, Sean N., Végvári, Ákos, Neogi, Ujjwal, Byrareddy, Siddappa N.
Publikováno v:
In Brain Behavior and Immunity January 2025 123:914-927
Autor:
Pamela E. Capendale, Inés García-Rodríguez, Anoop T. Ambikan, Lance A. Mulder, Josse A. Depla, Eline Freeze, Gerrit Koen, Carlemi Calitz, Vikas Sood, Renata Vieira de Sá, Ujjwal Neogi, Dasja Pajkrt, Adithya Sridhar, Katja C. Wolthers
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024)
Abstract Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with
Externí odkaz:
https://doaj.org/article/bda8e7616a1141d5a3a550360afea61c
Autor:
Anoop, T. V., Verma, Sheela
We consider the Neumann eigenvalue problem for Laplacian on a bounded multi-connected domain contained in simply connected space forms. Under certain symmetry assumptions on the domain, we prove Szeg\"{o}-Weinberger type inequalities for the first $n
Externí odkaz:
http://arxiv.org/abs/2202.11047