Zobrazeno 1 - 10
of 219
pro vyhledávání: '"Annamalai N"'
Autor:
Annamalai, N.
In this article, we discussed the zero-divisor graph of a commutative ring with identity $\mathbb{F}_p+u\mathbb{F}_p+u^2 \mathbb{F}_p$ where $u^3=0$ and $p$ is an odd prime. We find the clique number, chromatic number, vertex connectivity, edge conne
Externí odkaz:
http://arxiv.org/abs/2208.06004
Autor:
Annamalai, N.1 algebra.annamalai@gmail.com
Publikováno v:
Communications in Combinatorics & Optimization. Mar2025, Vol. 10 Issue 1, p151-163. 13p.
Autor:
R, Lakshmanan, Annamalai, N.
In this correspondence, we introduced the concept of minimum roman dominating distance energy $E_{RDd}(G)$ of a graph $G$ and computed minimum roman dominating distance energy of some standard graphs. Also, we discussed the properties of eigenvalues
Externí odkaz:
http://arxiv.org/abs/2203.16805
In this paper, we introduce a additive Tridiagonal and Double-Tridiagonal codes over $\mathbb{F}_4$ and then we study the properties of the code. Also, we find the number of additive Tridiagonal codes over $\mathbb{F}_4.$ Finally, we study the applic
Externí odkaz:
http://arxiv.org/abs/2104.05405
Autor:
Annamalai, N., Durairajan, C
In this paper, we examine the binary linear codes with respect to Hamming metric from incidence matrix of a unit graph $G(\mathbb{Z}_{n})$ with vertex set is $\mathbb{Z}_{n}$ and two distinct vertices $x$ and $y$ being adjacent if and only if $x+y$ i
Externí odkaz:
http://arxiv.org/abs/2011.04914
Autor:
Annamalai, N., Durairajan, C
In this paper, we examine the linear codes with respect to the Hamming metric from incidence matrices of the zero-divisor graphs with vertex set is the set of all non-zero zero-divisors of the ring $\mathbb{Z}_n$ and two distinct vertices being adjac
Externí odkaz:
http://arxiv.org/abs/2011.01602
Autor:
Annamalai, N., Durairajan, C.
In this article, we introduce and study the concept of the exponent of a cyclic code over a finite field $\mathbb{F}_q.$ We give a relation between the exponent of a cyclic code and its dual code. Finally, we introduce and determine the exponent dist
Externí odkaz:
http://arxiv.org/abs/2009.11607
Publikováno v:
In Surface & Coatings Technology 15 September 2023 468
Autor:
Annamalai, N., Durairajan, C.
This paper gives lower and upper bounds on the covering radius of codes over $\mathbb{Z}_{p^2}$ with respect to Lee distance. We also determine the covering radius of various Repetition codes over $\mathbb{Z}_{p^2}.$
Externí odkaz:
http://arxiv.org/abs/1711.01803
Autor:
Annamalai, N., Durairajan, C.
In this paper, we study a relative two-weight $\mathbb{Z}_2 \mathbb{Z}_4$-additive codes. It is shown that the Gray image of a two-distance $\mathbb{Z}_2 \mathbb{Z}_4$-additive code is a binary two-distance code and that the Gray image of a relative
Externí odkaz:
http://arxiv.org/abs/1609.09669