Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Annabella Astorino"'
Publikováno v:
EURO Journal on Computational Optimization, Vol 11, Iss , Pp 100070- (2023)
Multiple Instance Learning (MIL) is a kind of weak supervised learning, where each sample is represented by a bag of instances. The main characteristic of such problems resides in the training phase, since the class labels are provided only for each
Externí odkaz:
https://doaj.org/article/2b68c3ba229c4c6c8395ca3d9cf8e88c
Publikováno v:
Operations Research Letters. 51:197-203
Publikováno v:
Operations Research Letters. 51:40-46
Publikováno v:
European journal of operational research (2021).
info:cnr-pdr/source/autori:Annabella Astorino; Matteo Avolio; Antonio Fuduli/titolo:A maximum-margin multisphere approach for binary Multiple Instance Learning/doi:/rivista:European journal of operational research/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Annabella Astorino; Matteo Avolio; Antonio Fuduli/titolo:A maximum-margin multisphere approach for binary Multiple Instance Learning/doi:/rivista:European journal of operational research/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
We propose a heuristic approach for solving binary Multiple Instance Learning (MIL) problems, whose objective is to categorize bags of instances. Considering the case with two classes of instances, on the basis of the standard MIL assumption, a bag i
Publikováno v:
Soft computing (Berl., Print) (2021). doi:10.1007/s00500-021-05758-6
info:cnr-pdr/source/autori:Annabella Astorino; Massimo Di Francesco; Manlio Gaudioso; Enrico Gorgone; Benedetto Manca/titolo:Polyhedral separation via difference of convex (DC) programming/doi:10.1007%2Fs00500-021-05758-6/rivista:Soft computing (Berl., Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Annabella Astorino; Massimo Di Francesco; Manlio Gaudioso; Enrico Gorgone; Benedetto Manca/titolo:Polyhedral separation via difference of convex (DC) programming/doi:10.1007%2Fs00500-021-05758-6/rivista:Soft computing (Berl., Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
We consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265–293, 2002) and adopt its reformulation
Autor:
Annabella Astorino, Antonio Fuduli
Publikováno v:
Emergence, Complexity and Computation ISBN: 9783030936419
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bfbb9f4c2cd2f02cef09a574c9da0055
https://doi.org/10.1007/978-3-030-93642-6_10
https://doi.org/10.1007/978-3-030-93642-6_10
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems 30 (2019): 2662–2671. doi:10.1109/TNNLS.2018.2885852
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso./titolo:A Lagrangian Relaxation Approach for Binary Multiple Instance Classification/doi:10.1109%2FTNNLS.2018.2885852/rivista:IEEE Transactions on Neural Networks and Learning Systems/anno:2019/pagina_da:2662/pagina_a:2671/intervallo_pagine:2662–2671/volume:30
LION11, The 2017 Learning and Intelligent Optimization Conference, Nizhny Novgorod, Russia, June 19-21, 2017
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso/congresso_nome:LION11, The 2017 Learning and Intelligent Optimization Conference/congresso_luogo:Nizhny Novgorod, Russia/congresso_data:June 19-21, 2017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso./titolo:A Lagrangian Relaxation Approach for Binary Multiple Instance Classification/doi:10.1109%2FTNNLS.2018.2885852/rivista:IEEE Transactions on Neural Networks and Learning Systems/anno:2019/pagina_da:2662/pagina_a:2671/intervallo_pagine:2662–2671/volume:30
LION11, The 2017 Learning and Intelligent Optimization Conference, Nizhny Novgorod, Russia, June 19-21, 2017
info:cnr-pdr/source/autori:Annabella Astorino; Antonio Fuduli; Manlio Gaudioso/congresso_nome:LION11, The 2017 Learning and Intelligent Optimization Conference/congresso_luogo:Nizhny Novgorod, Russia/congresso_data:June 19-21, 2017/anno:2017/pagina_da:/pagina_a:/intervallo_pagine
In the standard classification problems, the objective is to categorize points into different classes. Multiple instance learning (MIL), instead, is aimed at classifying bags of points , each point being an instance . The main peculiarity of a MIL pr
The three-volume set LNCS 14476-14478 constitutes the post conference proceedings of the 4th International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2023, held in Pizzo Calabro, Italy, during June 14–20, 2023. The 45 full p
Publikováno v:
Networks (N.Y.N.Y., Print) (2021). doi:10.1002/net.22017
info:cnr-pdr/source/autori:Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna/titolo:A Lagrangean relaxation approach to lifetime maximization of directional sensor networks/doi:10.1002%2Fnet.22017/rivista:Networks (N.Y.N.Y., Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
info:cnr-pdr/source/autori:Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna/titolo:A Lagrangean relaxation approach to lifetime maximization of directional sensor networks/doi:10.1002%2Fnet.22017/rivista:Networks (N.Y.N.Y., Print)/anno:2021/pagina_da:/pagina_a:/intervallo_pagine:/volume
We consider the directional sensor network lifetime maximization problem (DSLMP). Given a set of directional sensor and target locations, the problem consists in assigning, at each time unit of a given time horizon, the action radius, the aperture an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7aad3fdd236d26238fa0ec2c93791290
Publikováno v:
ODS 2021: International Conference on Optimization and Decision Sciences-Optimization in Artificial Intelligence and Data Science, Rome, Universitá degli studi di Roma La Sapienza, 14-17/09/2021
info:cnr-pdr/source/autori:Benedetto Manca; Annabella Astorino; Antonio Frangioni; Enrico Gorgone/congresso_nome:ODS 2021: International Conference on Optimization and Decision Sciences-Optimization in Artificial Intelligence and Data Science/congresso_luogo:Rome, Universitá degli studi di Roma La Sapienza/congresso_data:14-17%2F09%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
info:cnr-pdr/source/autori:Benedetto Manca; Annabella Astorino; Antonio Frangioni; Enrico Gorgone/congresso_nome:ODS 2021: International Conference on Optimization and Decision Sciences-Optimization in Artificial Intelligence and Data Science/congresso_luogo:Rome, Universitá degli studi di Roma La Sapienza/congresso_data:14-17%2F09%2F2021/anno:2021/pagina_da:/pagina_a:/intervallo_pagine
Separating two finite set of points in an Euclidean space is a fundamental problem in classification. Customarily linear separation is used, but nonlinear separators such as spheres [1] have been shown to be possible and to have superior performances
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=cnr_________::a1816f1a471a1cc76048e4f16d2bed66
https://publications.cnr.it/doc/461357
https://publications.cnr.it/doc/461357