Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Anna Rozanova-Pierrat"'
Autor:
Hinz, Michael, Magoulès, Frédéric, Anna, Rozanova-Pierrat, Rynkovskaya, Marina, Teplyaev, Alexander
We consider shape optimization problems for elasticity systems in architecture. A typical question in this context is to identify a structure of maximal stability close to an initially proposed one. We show the existence of such an optimally shaped s
Externí odkaz:
http://arxiv.org/abs/2010.01832
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (2), pp.1007-1032. ⟨10.1137/20M1361687⟩
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (2), pp.1007-1032. ⟨10.1137/20M1361687⟩
We introduce new parametrized classes of shape admissible domains in R^n , n $\ge$ 2, and prove that they are compact with respect to the convergence in the sense of characteristic functions, the Hausdorff sense, the sense of compacts and the weak co
Autor:
Anna Rozanova-Pierrat, Adrien Dekkers
Publikováno v:
Communications in Mathematical Sciences. 18:2075-2119
The derivation of different models of non linear acoustic in thermo-ellastic media as the Kuznetsov equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE) from an isentropic Navier-Stokes/Euler
Autor:
Anna Rozanova-Pierrat, Adrien Dekkers
Publikováno v:
Discrete and Continuous Dynamical Systems-Series A
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2019, 39 (1), pp.277-307. ⟨10.3934/dcds.2019012⟩
Discrete and Continuous Dynamical Systems-Series A, American Institute of Mathematical Sciences, 2019, 39 (1), pp.277-307. ⟨10.3934/dcds.2019012⟩
We consider the Cauchy problem for a model of non-linear acoustics, named the Kuznetsov equation, describing sound propagation in thermo-viscous elastic media. For the viscous case, it is a weakly quasi-linear strongly damped wave equation, for which
Autor:
Anna Rozanova-Pierrat
Publikováno v:
Fractals in Engineering: Theoretical Aspects and Numerical Approximations ISBN: 9783030618025
We present a survey of recent results from the functional analysis that allow to solve PDEs in a large class of domains with irregular boundaries. We extend the previously introduced concept of admissible domains with a d-set boundary to domains with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::264d5f889af7e2777a2bf62faa83d262
https://doi.org/10.1007/978-3-030-61803-2_7
https://doi.org/10.1007/978-3-030-61803-2_7
Autor:
Anna, Rozanova-Pierrat
Publikováno v:
Analysis of PDEs [math.AP]. Université Paris-Saclay, 2020
En étudiant les phénomènes de la propagation d'ondes acoustiques linéaires et non linéaires venant de différents problèmes applicatifs physiques, on s'intéresse en particulier aux bords irréguliers et fractales. On développe les bases math
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::930ee41281c4aaf42e63342b0a3c51cd
https://tel.archives-ouvertes.fr/tel-03060630
https://tel.archives-ouvertes.fr/tel-03060630
Publikováno v:
SIAM Journal on Control and Optimization
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (1), pp.561-583. ⟨10.1137/20M1327239⟩
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (1), pp.561-583. ⟨10.1137/20M1327239⟩
In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the acoustical energy of a sound wave, we consider a frequency model described by the Helmholtz equation with a damping on the boundary. The well-posednes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e2510106795ffe147242156d70622e2
https://hal.archives-ouvertes.fr/hal-01558043v5/document
https://hal.archives-ouvertes.fr/hal-01558043v5/document
Publikováno v:
Discrete & Continuous Dynamical Systems-A
Discrete & Continuous Dynamical Systems-A, 2020, 40 A (7), pp.4231-4258. ⟨10.3934/dcds.2020179⟩
Discrete & Continuous Dynamical Systems-A, 2020, 40 A (7), pp.4231-4258. ⟨10.3934/dcds.2020179⟩
We relate together different models of non linear acoustic in thermo-ellastic media as the Kuznetsov equation, the Westervelt equation, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Nonlinear Progressive wave Equation (NPE) and estimate
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::45af0a2cb212724004569055ff0fc10e
https://hal.archives-ouvertes.fr/hal-02134311v2/document
https://hal.archives-ouvertes.fr/hal-02134311v2/document
Autor:
Frédéric Magoulès, Marina Rynkovskaya, Anna Rozanova-Pierrat, Alexander Teplyaev, Michael Hinz
Publikováno v:
Applied Mathematical Modelling
Applied Mathematical Modelling, Elsevier, 2021, 94, pp.676-687. ⟨10.1016/j.apm.2021.01.041⟩
Applied Mathematical Modelling, Elsevier, 2021, 94, pp.676-687. ⟨10.1016/j.apm.2021.01.041⟩
We consider shape optimization problems for elasticity systems in architecture. A typical objective in this context is to identify a structure of maximal stability that is close to an initially proposed one. For structures without external forces on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::267caf4724e65bee1351cf1f1de502c3
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to signific