Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Anna Pachoł"'
Publikováno v:
Physics Letters B, Vol 854, Iss , Pp 138729- (2024)
We propose the doubly κ-dependent Yang quantum phase space which describes the generalization of D=4 Yang model. We postulate that such model is covariant under the generalized Born map, what permits to derive this new model from the earlier propose
Externí odkaz:
https://doaj.org/article/66adeb4eaeb6415e9c0aecf85db790ed
Autor:
Anna Pachoł, Aneta Wojnar
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 83, Iss 12, Pp 1-10 (2023)
Abstract We investigate the application of an equation of state that incorporates corrections derived from the Snyder model (and the Generalized Uncertainty Principle) to describe the behaviour of matter in a low-mass star. Remarkably, the resulting
Externí odkaz:
https://doaj.org/article/5d8c05e2efa0451c89a9b198a71d0480
Quantum perturbative solutions of extended Snyder and Yang models with spontaneous symmetry breaking
Publikováno v:
Physics Letters B, Vol 847, Iss , Pp 138261- (2023)
We propose ħ-expansions as perturbative solutions of quantum extended Snyder and Yang models, with ħ-independent classical zero-th order terms responsible for the spontaneous breaking of D=4 and D=5 de Sitter symmetries. In such models, with algebr
Externí odkaz:
https://doaj.org/article/dac49d1e2800432ea6c53eb23a6ce6fd
Publikováno v:
Physics Letters B, Vol 838, Iss , Pp 137709- (2023)
We describe, in an algebraic way, the κ-deformed extended Snyder models, that depend on three parameters β,κ and λ, which in a suitable algebra basis are described by the de Sitter algebras o(1,N). The commutation relations of the algebra contain
Externí odkaz:
https://doaj.org/article/4e0a91f1a7b344da8cdfb7764d268a74
Publikováno v:
Journal of High Energy Physics, Vol 2017, Iss 10, Pp 1-27 (2017)
Abstract We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on
Externí odkaz:
https://doaj.org/article/d356ff4d06a14e228c70f0806b2e7f9f
Autor:
Stjepan Meljanac, Anna Pachoł
Publikováno v:
Symmetry, Vol 13, Iss 6, p 1055 (2021)
A Snyder model generated by the noncommutative coordinates and Lorentz generators closes a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. This leads to the phase s
Externí odkaz:
https://doaj.org/article/5274a6183a3e4a82a98b96dffcf46d06
Publikováno v:
Physics Letters B
Physics Letters
Physics Letters
We describe, in an algebraic way, the $\kappa$-deformed extended Snyder models, that depend on three parameters $\beta, \kappa$ and $\lambda$, which in a suitable algebra basis are described by the de Sitter algebras ${o}(1,N)$. The commutation relat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6cde0c0bbde78899514c88c757a40e6
http://arxiv.org/abs/2208.06712
http://arxiv.org/abs/2208.06712
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications
We propose a new generalisation of the Jordanian twist (building on the previous idea from [Meljanac S., Meljanac D., Pachol A., Pikutic D., J. Phys. A: Math. Theor. 50 (2017), 265201, 11 pages]). Obtained this way, the family of the Jordanian twists
Autor:
Anna Pachoł, Stjepan Meljanac
Publikováno v:
Symmetry, Vol 13, Iss 1055, p 1055 (2021)
Symmetry
Volume 13
Issue 6
Symmetry
Volume 13
Issue 6
A Snyder model generated by the noncommutative coordinates and Lorentz generators close a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. It leads to the phase spac
Publikováno v:
Journal of Cosmology and Astroparticle Physics. 2021:025
We study noncommutative deformations of the wave equation in curved backgrounds and discuss the modification of the dispersion relations due to noncommutativity combined with curvature of spacetime. Our noncommutative differential geometry approach i