Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Ann Kiefer"'
Publikováno v:
Forum Mathematicum. 35:409-429
The Gruenberg–Kegel graph of a group is the undirected graph whose vertices are those primes which occur as the order of an element of the group, and distinct vertices p, q are joined by an edge whenever the group has an element of order pq. It ref
Publikováno v:
Journal of Algebra, Vol. 604, no.1, p. 185-223 (2022)
We show that $\mathcal{U}(\mathbb{Z}G)$, the unit group of the integral group ring $\mathbb{Z} G$, either satisfies Kazhdan's property (T) or is, up to commensurability, a non-trivial amalgamated product, in case $G$ is a finite group satisfying some
Publikováno v:
Mathematische Nachrichten, Vol. 296, no.1, p. 8-56 (2023)
Let $G$ be a finite group and $\mathcal{U} (\mathbb{Z} G)$ the unit group of the integral group ring $\mathbb{Z} G$. We prove a unit theorem, namely a characterization of when $\mathcal{U}(\mathbb{Z}G)$ satisfies Kazhdan's property $(\operatorname{T}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a461c763d49e9f77664c8e248733fa83
https://hdl.handle.net/2078.1/271810
https://hdl.handle.net/2078.1/271810
Publikováno v:
Mathematics of Computation. 85:2515-2552
The problem of describing the group of units $\mathcal{U}(\mathbb{Z} G)$ of the integral group ring $\mathbb{Z} G$ of a finite group $G$ has attracted a lot of attention and providing presentations for such groups is a fundamental problem. Within the
Autor:
Ann Kiefer
We generalize an algorithm established in earlier work \cite{algebrapaper} to compute finitely many generators for a subgroup of finite index of an arithmetic group acting properly discontinuously on hyperbolic space of dimension $2$ and $3$, to hype
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03f3593b099cbf7e8a5a285643bca1bf
http://arxiv.org/abs/1609.08308
http://arxiv.org/abs/1609.08308
Publikováno v:
Bull. Belg. Math. Soc. Simon Stevin 23, no. 3 (2016), 465-479
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
We continue investigations started by Lakeland on Fuchsian and Kleinian groups which have a Dirichlet fundamental domain that also is a Ford domain in the upper half-space model of hyperbolic $2$- and $3$-space, or which have a Dirichlet domain with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a882060d8f8d9a368db1a762aa6e75ee
http://projecteuclid.org/euclid.bbms/1473186517
http://projecteuclid.org/euclid.bbms/1473186517
Autor:
Kristin Ann Kiefer
Public spaces are noted by historians, philosophers, planners, etc as being the lifeblood of civic centers, spaces that bring people in community together for a myriad of reasons. Recalling the ancient Agricola’s of ancient Greece to the modern ver
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::80a6f9f7a0fe36a6697a5b9d1dc5f47b
https://doi.org/10.15368/theses.2014.108
https://doi.org/10.15368/theses.2014.108
Autor:
Ruth Ann Kiefer
Publikováno v:
Rehabilitation Nursing. 36:120-126
Projections by the U.S. Census Bureau indicate a continual rise in the population of older adults. Along with increased dependency among older adults, chronic illness and aging may have attendant social and personal concerns in the areas of health ca
We give a new self-contained proof of Poincar\'e's Polyhedron Theorem on presentations of discontinuous groups of isometries of a Riemann manifold of constant curvature. The proof is not based on the theory of covering spaces, but only makes use of b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::61f797f0f50d4a776b54964e00cd768f
http://arxiv.org/abs/1504.07779
http://arxiv.org/abs/1504.07779
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We determine explicit formulas for the bisectors used in constructing a Dirichlet fundamen- tal domain in hyperbolic two and three space. They are compared with the isometric spheres employed in the construction of a Ford domain and used to finnd a f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ce252fd614c035e250f2b2562665485
https://hdl.handle.net/20.500.14017/68e06f8d-cad6-4df8-88bc-55b80d0905f1
https://hdl.handle.net/20.500.14017/68e06f8d-cad6-4df8-88bc-55b80d0905f1